Commit 3f59a579 authored by takatost's avatar takatost

add llm node

parent 4f5c052d
......@@ -23,7 +23,8 @@ from core.model_runtime.errors.invoke import InvokeBadRequestError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.moderation.input_moderation import InputModeration
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.simple_prompt_transform import SimplePromptTransform
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
from core.prompt.simple_prompt_transform import ModelMode, SimplePromptTransform
from models.model import App, AppMode, Message, MessageAnnotation
......@@ -155,13 +156,39 @@ class AppRunner:
model_config=model_config
)
else:
memory_config = MemoryConfig(
window=MemoryConfig.WindowConfig(
enabled=False
)
)
model_mode = ModelMode.value_of(model_config.mode)
if model_mode == ModelMode.COMPLETION:
advanced_completion_prompt_template = prompt_template_entity.advanced_completion_prompt_template
prompt_template = CompletionModelPromptTemplate(
text=advanced_completion_prompt_template.prompt
)
memory_config.role_prefix = MemoryConfig.RolePrefix(
user=advanced_completion_prompt_template.role_prefix.user,
assistant=advanced_completion_prompt_template.role_prefix.assistant
)
else:
prompt_template = []
for message in prompt_template_entity.advanced_chat_prompt_template.messages:
prompt_template.append(ChatModelMessage(
text=message.text,
role=message.role
))
prompt_transform = AdvancedPromptTransform()
prompt_messages = prompt_transform.get_prompt(
prompt_template_entity=prompt_template_entity,
prompt_template=prompt_template,
inputs=inputs,
query=query if query else '',
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config
)
......
......@@ -30,17 +30,12 @@ from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotIni
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
PromptMessageRole,
TextPromptMessageContent,
)
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.moderation.output_moderation import ModerationRule, OutputModeration
from core.prompt.simple_prompt_transform import ModelMode
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from core.tools.tool_file_manager import ToolFileManager
from events.message_event import message_was_created
......@@ -438,7 +433,10 @@ class EasyUIBasedGenerateTaskPipeline:
self._message = db.session.query(Message).filter(Message.id == self._message.id).first()
self._conversation = db.session.query(Conversation).filter(Conversation.id == self._conversation.id).first()
self._message.message = self._prompt_messages_to_prompt_for_saving(self._task_state.llm_result.prompt_messages)
self._message.message = PromptMessageUtil.prompt_messages_to_prompt_for_saving(
self._model_config.mode,
self._task_state.llm_result.prompt_messages
)
self._message.message_tokens = usage.prompt_tokens
self._message.message_unit_price = usage.prompt_unit_price
self._message.message_price_unit = usage.prompt_price_unit
......@@ -582,77 +580,6 @@ class EasyUIBasedGenerateTaskPipeline:
"""
return "data: " + json.dumps(response) + "\n\n"
def _prompt_messages_to_prompt_for_saving(self, prompt_messages: list[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param prompt_messages: prompt messages
:return:
"""
prompts = []
if self._model_config.mode == ModelMode.CHAT.value:
for prompt_message in prompt_messages:
if prompt_message.role == PromptMessageRole.USER:
role = 'user'
elif prompt_message.role == PromptMessageRole.ASSISTANT:
role = 'assistant'
elif prompt_message.role == PromptMessageRole.SYSTEM:
role = 'system'
else:
continue
text = ''
files = []
if isinstance(prompt_message.content, list):
for content in prompt_message.content:
if content.type == PromptMessageContentType.TEXT:
content = cast(TextPromptMessageContent, content)
text += content.data
else:
content = cast(ImagePromptMessageContent, content)
files.append({
"type": 'image',
"data": content.data[:10] + '...[TRUNCATED]...' + content.data[-10:],
"detail": content.detail.value
})
else:
text = prompt_message.content
prompts.append({
"role": role,
"text": text,
"files": files
})
else:
prompt_message = prompt_messages[0]
text = ''
files = []
if isinstance(prompt_message.content, list):
for content in prompt_message.content:
if content.type == PromptMessageContentType.TEXT:
content = cast(TextPromptMessageContent, content)
text += content.data
else:
content = cast(ImagePromptMessageContent, content)
files.append({
"type": 'image',
"data": content.data[:10] + '...[TRUNCATED]...' + content.data[-10:],
"detail": content.detail.value
})
else:
text = prompt_message.content
params = {
"role": 'user',
"text": text,
}
if files:
params['files'] = files
prompts.append(params)
return prompts
def _init_output_moderation(self) -> Optional[OutputModeration]:
"""
Init output moderation.
......
......@@ -24,11 +24,11 @@ class ModelInstance:
"""
def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
self._provider_model_bundle = provider_model_bundle
self.provider_model_bundle = provider_model_bundle
self.model = model
self.provider = provider_model_bundle.configuration.provider.provider
self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
self.model_type_instance = self._provider_model_bundle.model_type_instance
self.model_type_instance = self.provider_model_bundle.model_type_instance
def _fetch_credentials_from_bundle(self, provider_model_bundle: ProviderModelBundle, model: str) -> dict:
"""
......
from typing import Optional
from typing import Optional, Union
from core.app.app_config.entities import AdvancedCompletionPromptTemplateEntity, PromptTemplateEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.file.file_obj import FileObj
from core.memory.token_buffer_memory import TokenBufferMemory
......@@ -12,6 +11,7 @@ from core.model_runtime.entities.message_entities import (
TextPromptMessageContent,
UserPromptMessage,
)
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
from core.prompt.prompt_transform import PromptTransform
from core.prompt.simple_prompt_transform import ModelMode
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
......@@ -22,11 +22,12 @@ class AdvancedPromptTransform(PromptTransform):
Advanced Prompt Transform for Workflow LLM Node.
"""
def get_prompt(self, prompt_template_entity: PromptTemplateEntity,
def get_prompt(self, prompt_template: Union[list[ChatModelMessage], CompletionModelPromptTemplate],
inputs: dict,
query: str,
files: list[FileObj],
context: Optional[str],
memory_config: Optional[MemoryConfig],
memory: Optional[TokenBufferMemory],
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
prompt_messages = []
......@@ -34,21 +35,23 @@ class AdvancedPromptTransform(PromptTransform):
model_mode = ModelMode.value_of(model_config.mode)
if model_mode == ModelMode.COMPLETION:
prompt_messages = self._get_completion_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=prompt_template,
inputs=inputs,
query=query,
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config
)
elif model_mode == ModelMode.CHAT:
prompt_messages = self._get_chat_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=prompt_template,
inputs=inputs,
query=query,
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config
)
......@@ -56,17 +59,18 @@ class AdvancedPromptTransform(PromptTransform):
return prompt_messages
def _get_completion_model_prompt_messages(self,
prompt_template_entity: PromptTemplateEntity,
prompt_template: CompletionModelPromptTemplate,
inputs: dict,
query: Optional[str],
files: list[FileObj],
context: Optional[str],
memory_config: Optional[MemoryConfig],
memory: Optional[TokenBufferMemory],
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
"""
Get completion model prompt messages.
"""
raw_prompt = prompt_template_entity.advanced_completion_prompt_template.prompt
raw_prompt = prompt_template.text
prompt_messages = []
......@@ -75,15 +79,17 @@ class AdvancedPromptTransform(PromptTransform):
prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
role_prefix = prompt_template_entity.advanced_completion_prompt_template.role_prefix
prompt_inputs = self._set_histories_variable(
memory=memory,
raw_prompt=raw_prompt,
role_prefix=role_prefix,
prompt_template=prompt_template,
prompt_inputs=prompt_inputs,
model_config=model_config
)
if memory and memory_config:
role_prefix = memory_config.role_prefix
prompt_inputs = self._set_histories_variable(
memory=memory,
memory_config=memory_config,
raw_prompt=raw_prompt,
role_prefix=role_prefix,
prompt_template=prompt_template,
prompt_inputs=prompt_inputs,
model_config=model_config
)
if query:
prompt_inputs = self._set_query_variable(query, prompt_template, prompt_inputs)
......@@ -104,17 +110,18 @@ class AdvancedPromptTransform(PromptTransform):
return prompt_messages
def _get_chat_model_prompt_messages(self,
prompt_template_entity: PromptTemplateEntity,
prompt_template: list[ChatModelMessage],
inputs: dict,
query: Optional[str],
files: list[FileObj],
context: Optional[str],
memory_config: Optional[MemoryConfig],
memory: Optional[TokenBufferMemory],
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
"""
Get chat model prompt messages.
"""
raw_prompt_list = prompt_template_entity.advanced_chat_prompt_template.messages
raw_prompt_list = prompt_template
prompt_messages = []
......@@ -137,8 +144,8 @@ class AdvancedPromptTransform(PromptTransform):
elif prompt_item.role == PromptMessageRole.ASSISTANT:
prompt_messages.append(AssistantPromptMessage(content=prompt))
if memory:
prompt_messages = self._append_chat_histories(memory, prompt_messages, model_config)
if memory and memory_config:
prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
if files:
prompt_message_contents = [TextPromptMessageContent(data=query)]
......@@ -195,8 +202,9 @@ class AdvancedPromptTransform(PromptTransform):
return prompt_inputs
def _set_histories_variable(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
raw_prompt: str,
role_prefix: AdvancedCompletionPromptTemplateEntity.RolePrefixEntity,
role_prefix: MemoryConfig.RolePrefix,
prompt_template: PromptTemplateParser,
prompt_inputs: dict,
model_config: ModelConfigWithCredentialsEntity) -> dict:
......@@ -213,6 +221,7 @@ class AdvancedPromptTransform(PromptTransform):
histories = self._get_history_messages_from_memory(
memory=memory,
memory_config=memory_config,
max_token_limit=rest_tokens,
human_prefix=role_prefix.user,
ai_prefix=role_prefix.assistant
......
from typing import Optional
from pydantic import BaseModel
from core.model_runtime.entities.message_entities import PromptMessageRole
class ChatModelMessage(BaseModel):
"""
Chat Message.
"""
text: str
role: PromptMessageRole
class CompletionModelPromptTemplate(BaseModel):
"""
Completion Model Prompt Template.
"""
text: str
class MemoryConfig(BaseModel):
"""
Memory Config.
"""
class RolePrefix(BaseModel):
"""
Role Prefix.
"""
user: str
assistant: str
class WindowConfig(BaseModel):
"""
Window Config.
"""
enabled: bool
size: Optional[int] = None
role_prefix: Optional[RolePrefix] = None
window: WindowConfig
......@@ -5,19 +5,22 @@ from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelPropertyKey
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
class PromptTransform:
def _append_chat_histories(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
prompt_messages: list[PromptMessage],
model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
rest_tokens = self._calculate_rest_token(prompt_messages, model_config)
histories = self._get_history_messages_list_from_memory(memory, rest_tokens)
histories = self._get_history_messages_list_from_memory(memory, memory_config, rest_tokens)
prompt_messages.extend(histories)
return prompt_messages
def _calculate_rest_token(self, prompt_messages: list[PromptMessage], model_config: ModelConfigWithCredentialsEntity) -> int:
def _calculate_rest_token(self, prompt_messages: list[PromptMessage],
model_config: ModelConfigWithCredentialsEntity) -> int:
rest_tokens = 2000
model_context_tokens = model_config.model_schema.model_properties.get(ModelPropertyKey.CONTEXT_SIZE)
......@@ -44,6 +47,7 @@ class PromptTransform:
return rest_tokens
def _get_history_messages_from_memory(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
max_token_limit: int,
human_prefix: Optional[str] = None,
ai_prefix: Optional[str] = None) -> str:
......@@ -58,13 +62,22 @@ class PromptTransform:
if ai_prefix:
kwargs['ai_prefix'] = ai_prefix
if memory_config.window.enabled and memory_config.window.size is not None and memory_config.window.size > 0:
kwargs['message_limit'] = memory_config.window.size
return memory.get_history_prompt_text(
**kwargs
)
def _get_history_messages_list_from_memory(self, memory: TokenBufferMemory,
memory_config: MemoryConfig,
max_token_limit: int) -> list[PromptMessage]:
"""Get memory messages."""
return memory.get_history_prompt_messages(
max_token_limit=max_token_limit
max_token_limit=max_token_limit,
message_limit=memory_config.window.size
if (memory_config.window.enabled
and memory_config.window.size is not None
and memory_config.window.size > 0)
else 10
)
......@@ -13,6 +13,7 @@ from core.model_runtime.entities.message_entities import (
TextPromptMessageContent,
UserPromptMessage,
)
from core.prompt.entities.advanced_prompt_entities import MemoryConfig
from core.prompt.prompt_transform import PromptTransform
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from models.model import AppMode
......@@ -182,6 +183,11 @@ class SimplePromptTransform(PromptTransform):
if memory:
prompt_messages = self._append_chat_histories(
memory=memory,
memory_config=MemoryConfig(
window=MemoryConfig.WindowConfig(
enabled=False,
)
),
prompt_messages=prompt_messages,
model_config=model_config
)
......@@ -220,6 +226,11 @@ class SimplePromptTransform(PromptTransform):
rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
histories = self._get_history_messages_from_memory(
memory=memory,
memory_config=MemoryConfig(
window=MemoryConfig.WindowConfig(
enabled=False,
)
),
max_token_limit=rest_tokens,
ai_prefix=prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human',
human_prefix=prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
......
from typing import cast
from core.model_runtime.entities.message_entities import (
ImagePromptMessageContent,
PromptMessage,
PromptMessageContentType,
PromptMessageRole,
TextPromptMessageContent,
)
from core.prompt.simple_prompt_transform import ModelMode
class PromptMessageUtil:
@staticmethod
def prompt_messages_to_prompt_for_saving(model_mode: str, prompt_messages: list[PromptMessage]) -> list[dict]:
"""
Prompt messages to prompt for saving.
:param model_mode: model mode
:param prompt_messages: prompt messages
:return:
"""
prompts = []
if model_mode == ModelMode.CHAT.value:
for prompt_message in prompt_messages:
if prompt_message.role == PromptMessageRole.USER:
role = 'user'
elif prompt_message.role == PromptMessageRole.ASSISTANT:
role = 'assistant'
elif prompt_message.role == PromptMessageRole.SYSTEM:
role = 'system'
else:
continue
text = ''
files = []
if isinstance(prompt_message.content, list):
for content in prompt_message.content:
if content.type == PromptMessageContentType.TEXT:
content = cast(TextPromptMessageContent, content)
text += content.data
else:
content = cast(ImagePromptMessageContent, content)
files.append({
"type": 'image',
"data": content.data[:10] + '...[TRUNCATED]...' + content.data[-10:],
"detail": content.detail.value
})
else:
text = prompt_message.content
prompts.append({
"role": role,
"text": text,
"files": files
})
else:
prompt_message = prompt_messages[0]
text = ''
files = []
if isinstance(prompt_message.content, list):
for content in prompt_message.content:
if content.type == PromptMessageContentType.TEXT:
content = cast(TextPromptMessageContent, content)
text += content.data
else:
content = cast(ImagePromptMessageContent, content)
files.append({
"type": 'image',
"data": content.data[:10] + '...[TRUNCATED]...' + content.data[-10:],
"detail": content.detail.value
})
else:
text = prompt_message.content
params = {
"role": 'user',
"text": text,
}
if files:
params['files'] = files
prompts.append(params)
return prompts
......@@ -12,7 +12,7 @@ class NodeType(Enum):
"""
START = 'start'
END = 'end'
DIRECT_ANSWER = 'direct-answer'
ANSWER = 'answer'
LLM = 'llm'
KNOWLEDGE_RETRIEVAL = 'knowledge-retrieval'
IF_ELSE = 'if-else'
......
......@@ -5,14 +5,14 @@ from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeRunResult, NodeType
from core.workflow.entities.variable_pool import ValueType, VariablePool
from core.workflow.nodes.answer.entities import AnswerNodeData
from core.workflow.nodes.base_node import BaseNode
from core.workflow.nodes.direct_answer.entities import DirectAnswerNodeData
from models.workflow import WorkflowNodeExecutionStatus
class DirectAnswerNode(BaseNode):
_node_data_cls = DirectAnswerNodeData
node_type = NodeType.DIRECT_ANSWER
class AnswerNode(BaseNode):
_node_data_cls = AnswerNodeData
node_type = NodeType.ANSWER
def _run(self, variable_pool: VariablePool) -> NodeRunResult:
"""
......
......@@ -2,9 +2,9 @@ from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.variable_entities import VariableSelector
class DirectAnswerNodeData(BaseNodeData):
class AnswerNodeData(BaseNodeData):
"""
DirectAnswer Node Data.
Answer Node Data.
"""
variables: list[VariableSelector] = []
answer: str
from typing import Any, Literal, Optional, Union
from pydantic import BaseModel
from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.variable_entities import VariableSelector
class ModelConfig(BaseModel):
"""
Model Config.
"""
provider: str
name: str
mode: str
completion_params: dict[str, Any] = {}
class ContextConfig(BaseModel):
"""
Context Config.
"""
enabled: bool
variable_selector: Optional[list[str]] = None
class VisionConfig(BaseModel):
"""
Vision Config.
"""
class Configs(BaseModel):
"""
Configs.
"""
detail: Literal['low', 'high']
enabled: bool
configs: Optional[Configs] = None
class LLMNodeData(BaseNodeData):
"""
LLM Node Data.
"""
pass
model: ModelConfig
variables: list[VariableSelector] = []
prompt_template: Union[list[ChatModelMessage], CompletionModelPromptTemplate]
memory: Optional[MemoryConfig] = None
context: ContextConfig
vision: VisionConfig
from collections.abc import Generator
from typing import Optional, cast
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.file.file_obj import FileObj
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.entities.message_entities import PromptMessage
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.utils.prompt_message_util import PromptMessageUtil
from core.workflow.entities.base_node_data_entities import BaseNodeData
from core.workflow.entities.node_entities import NodeRunResult, NodeType
from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult, NodeType, SystemVariable
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.nodes.base_node import BaseNode
from core.workflow.nodes.llm.entities import LLMNodeData
from extensions.ext_database import db
from models.model import Conversation
from models.workflow import WorkflowNodeExecutionStatus
class LLMNode(BaseNode):
......@@ -20,7 +37,341 @@ class LLMNode(BaseNode):
node_data = self.node_data
node_data = cast(self._node_data_cls, node_data)
pass
node_inputs = None
process_data = None
try:
# fetch variables and fetch values from variable pool
inputs = self._fetch_inputs(node_data, variable_pool)
node_inputs = {
**inputs
}
# fetch files
files: list[FileObj] = self._fetch_files(node_data, variable_pool)
if files:
node_inputs['#files#'] = [{
'type': file.type.value,
'transfer_method': file.transfer_method.value,
'url': file.url,
'upload_file_id': file.upload_file_id,
} for file in files]
# fetch context value
context = self._fetch_context(node_data, variable_pool)
if context:
node_inputs['#context#'] = context
# fetch model config
model_instance, model_config = self._fetch_model_config(node_data)
# fetch memory
memory = self._fetch_memory(node_data, variable_pool, model_instance)
# fetch prompt messages
prompt_messages, stop = self._fetch_prompt_messages(
node_data=node_data,
inputs=inputs,
files=files,
context=context,
memory=memory,
model_config=model_config
)
process_data = {
'model_mode': model_config.mode,
'prompts': PromptMessageUtil.prompt_messages_to_prompt_for_saving(
model_mode=model_config.mode,
prompt_messages=prompt_messages
)
}
# handle invoke result
result_text, usage = self._invoke_llm(
node_data=node_data,
model_instance=model_instance,
prompt_messages=prompt_messages,
stop=stop
)
except Exception as e:
return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e),
inputs=node_inputs,
process_data=process_data
)
outputs = {
'text': result_text,
'usage': jsonable_encoder(usage)
}
return NodeRunResult(
status=WorkflowNodeExecutionStatus.SUCCEEDED,
inputs=node_inputs,
process_data=process_data,
outputs=outputs,
metadata={
NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
NodeRunMetadataKey.CURRENCY: usage.currency
}
)
def _invoke_llm(self, node_data: LLMNodeData,
model_instance: ModelInstance,
prompt_messages: list[PromptMessage],
stop: list[str]) -> tuple[str, LLMUsage]:
"""
Invoke large language model
:param node_data: node data
:param model_instance: model instance
:param prompt_messages: prompt messages
:param stop: stop
:return:
"""
db.session.close()
invoke_result = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=node_data.model.completion_params,
stop=stop,
stream=True,
user=self.user_id,
)
# handle invoke result
return self._handle_invoke_result(
invoke_result=invoke_result
)
def _handle_invoke_result(self, invoke_result: Generator) -> tuple[str, LLMUsage]:
"""
Handle invoke result
:param invoke_result: invoke result
:return:
"""
model = None
prompt_messages = []
full_text = ''
usage = None
for result in invoke_result:
text = result.delta.message.content
full_text += text
self.publish_text_chunk(text=text)
if not model:
model = result.model
if not prompt_messages:
prompt_messages = result.prompt_messages
if not usage and result.delta.usage:
usage = result.delta.usage
if not usage:
usage = LLMUsage.empty_usage()
return full_text, usage
def _fetch_inputs(self, node_data: LLMNodeData, variable_pool: VariablePool) -> dict[str, str]:
"""
Fetch inputs
:param node_data: node data
:param variable_pool: variable pool
:return:
"""
inputs = {}
for variable_selector in node_data.variables:
variable_value = variable_pool.get_variable_value(variable_selector.value_selector)
if variable_value is None:
raise ValueError(f'Variable {variable_selector.value_selector} not found')
inputs[variable_selector.variable] = variable_value
return inputs
def _fetch_files(self, node_data: LLMNodeData, variable_pool: VariablePool) -> list[FileObj]:
"""
Fetch files
:param node_data: node data
:param variable_pool: variable pool
:return:
"""
if not node_data.vision.enabled:
return []
files = variable_pool.get_variable_value(['sys', SystemVariable.FILES.value])
if not files:
return []
return files
def _fetch_context(self, node_data: LLMNodeData, variable_pool: VariablePool) -> Optional[str]:
"""
Fetch context
:param node_data: node data
:param variable_pool: variable pool
:return:
"""
if not node_data.context.enabled:
return None
context_value = variable_pool.get_variable_value(node_data.context.variable_selector)
if context_value:
if isinstance(context_value, str):
return context_value
elif isinstance(context_value, list):
context_str = ''
for item in context_value:
if 'content' not in item:
raise ValueError(f'Invalid context structure: {item}')
context_str += item['content'] + '\n'
return context_str.strip()
return None
def _fetch_model_config(self, node_data: LLMNodeData) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
"""
Fetch model config
:param node_data: node data
:return:
"""
model_name = node_data.model.name
provider_name = node_data.model.provider
model_manager = ModelManager()
model_instance = model_manager.get_model_instance(
tenant_id=self.tenant_id,
model_type=ModelType.LLM,
provider=provider_name,
model=model_name
)
provider_model_bundle = model_instance.provider_model_bundle
model_type_instance = model_instance.model_type_instance
model_type_instance = cast(LargeLanguageModel, model_type_instance)
model_credentials = model_instance.credentials
# check model
provider_model = provider_model_bundle.configuration.get_provider_model(
model=model_name,
model_type=ModelType.LLM
)
if provider_model is None:
raise ValueError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = node_data.model.completion_params
stop = []
if 'stop' in completion_params:
stop = completion_params['stop']
del completion_params['stop']
# get model mode
model_mode = node_data.model.mode
if not model_mode:
raise ValueError("LLM mode is required.")
model_schema = model_type_instance.get_model_schema(
model_name,
model_credentials
)
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
return model_instance, ModelConfigWithCredentialsEntity(
provider=provider_name,
model=model_name,
model_schema=model_schema,
mode=model_mode,
provider_model_bundle=provider_model_bundle,
credentials=model_credentials,
parameters=completion_params,
stop=stop,
)
def _fetch_memory(self, node_data: LLMNodeData,
variable_pool: VariablePool,
model_instance: ModelInstance) -> Optional[TokenBufferMemory]:
"""
Fetch memory
:param node_data: node data
:param variable_pool: variable pool
:return:
"""
if not node_data.memory:
return None
# get conversation id
conversation_id = variable_pool.get_variable_value(['sys', SystemVariable.CONVERSATION])
if conversation_id is None:
return None
# get conversation
conversation = db.session.query(Conversation).filter(
Conversation.tenant_id == self.tenant_id,
Conversation.app_id == self.app_id,
Conversation.id == conversation_id
).first()
if not conversation:
return None
memory = TokenBufferMemory(
conversation=conversation,
model_instance=model_instance
)
return memory
def _fetch_prompt_messages(self, node_data: LLMNodeData,
inputs: dict[str, str],
files: list[FileObj],
context: Optional[str],
memory: Optional[TokenBufferMemory],
model_config: ModelConfigWithCredentialsEntity) \
-> tuple[list[PromptMessage], Optional[list[str]]]:
"""
Fetch prompt messages
:param node_data: node data
:param inputs: inputs
:param files: files
:param context: context
:param memory: memory
:param model_config: model config
:return:
"""
prompt_transform = AdvancedPromptTransform()
prompt_messages = prompt_transform.get_prompt(
prompt_template=node_data.prompt_template,
inputs=inputs,
query='',
files=files,
context=context,
memory_config=node_data.memory,
memory=memory,
model_config=model_config
)
stop = model_config.stop
return prompt_messages, stop
@classmethod
def _extract_variable_selector_to_variable_mapping(cls, node_data: BaseNodeData) -> dict[str, list[str]]:
......@@ -29,9 +380,20 @@ class LLMNode(BaseNode):
:param node_data: node data
:return:
"""
# TODO extract variable selector to variable mapping for single step debugging
return {}
node_data = node_data
node_data = cast(cls._node_data_cls, node_data)
variable_mapping = {}
for variable_selector in node_data.variables:
variable_mapping[variable_selector.variable] = variable_selector.value_selector
if node_data.context.enabled:
variable_mapping['#context#'] = node_data.context.variable_selector
if node_data.vision.enabled:
variable_mapping['#files#'] = ['sys', SystemVariable.FILES.value]
return variable_mapping
@classmethod
def get_default_config(cls, filters: Optional[dict] = None) -> dict:
......
......@@ -7,9 +7,9 @@ from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResu
from core.workflow.entities.variable_pool import VariablePool, VariableValue
from core.workflow.entities.workflow_entities import WorkflowNodeAndResult, WorkflowRunState
from core.workflow.errors import WorkflowNodeRunFailedError
from core.workflow.nodes.answer.answer_node import AnswerNode
from core.workflow.nodes.base_node import BaseNode, UserFrom
from core.workflow.nodes.code.code_node import CodeNode
from core.workflow.nodes.direct_answer.direct_answer_node import DirectAnswerNode
from core.workflow.nodes.end.end_node import EndNode
from core.workflow.nodes.http_request.http_request_node import HttpRequestNode
from core.workflow.nodes.if_else.if_else_node import IfElseNode
......@@ -24,13 +24,12 @@ from extensions.ext_database import db
from models.workflow import (
Workflow,
WorkflowNodeExecutionStatus,
WorkflowType,
)
node_classes = {
NodeType.START: StartNode,
NodeType.END: EndNode,
NodeType.DIRECT_ANSWER: DirectAnswerNode,
NodeType.ANSWER: AnswerNode,
NodeType.LLM: LLMNode,
NodeType.KNOWLEDGE_RETRIEVAL: KnowledgeRetrievalNode,
NodeType.IF_ELSE: IfElseNode,
......@@ -156,7 +155,7 @@ class WorkflowEngineManager:
callbacks=callbacks
)
if next_node.node_type == NodeType.END:
if next_node.node_type in [NodeType.END, NodeType.ANSWER]:
break
predecessor_node = next_node
......@@ -402,10 +401,16 @@ class WorkflowEngineManager:
# add to workflow_nodes_and_results
workflow_run_state.workflow_nodes_and_results.append(workflow_nodes_and_result)
# run node, result must have inputs, process_data, outputs, execution_metadata
node_run_result = node.run(
variable_pool=workflow_run_state.variable_pool
)
try:
# run node, result must have inputs, process_data, outputs, execution_metadata
node_run_result = node.run(
variable_pool=workflow_run_state.variable_pool
)
except Exception as e:
node_run_result = NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
error=str(e)
)
if node_run_result.status == WorkflowNodeExecutionStatus.FAILED:
# node run failed
......@@ -420,9 +425,6 @@ class WorkflowEngineManager:
raise ValueError(f"Node {node.node_data.title} run failed: {node_run_result.error}")
# set end node output if in chat
self._set_end_node_output_if_in_chat(workflow_run_state, node, node_run_result)
workflow_nodes_and_result.result = node_run_result
# node run success
......@@ -453,29 +455,6 @@ class WorkflowEngineManager:
db.session.close()
def _set_end_node_output_if_in_chat(self, workflow_run_state: WorkflowRunState,
node: BaseNode,
node_run_result: NodeRunResult) -> None:
"""
Set end node output if in chat
:param workflow_run_state: workflow run state
:param node: current node
:param node_run_result: node run result
:return:
"""
if workflow_run_state.workflow_type == WorkflowType.CHAT and node.node_type == NodeType.END:
workflow_nodes_and_result_before_end = workflow_run_state.workflow_nodes_and_results[-2]
if workflow_nodes_and_result_before_end:
if workflow_nodes_and_result_before_end.node.node_type == NodeType.LLM:
if not node_run_result.outputs:
node_run_result.outputs = {}
node_run_result.outputs['text'] = workflow_nodes_and_result_before_end.result.outputs.get('text')
elif workflow_nodes_and_result_before_end.node.node_type == NodeType.DIRECT_ANSWER:
if not node_run_result.outputs:
node_run_result.outputs = {}
node_run_result.outputs['text'] = workflow_nodes_and_result_before_end.result.outputs.get('answer')
def _append_variables_recursively(self, variable_pool: VariablePool,
node_id: str,
......
......@@ -2,12 +2,12 @@ from unittest.mock import MagicMock
import pytest
from core.app.app_config.entities import PromptTemplateEntity, AdvancedCompletionPromptTemplateEntity, \
ModelConfigEntity, AdvancedChatPromptTemplateEntity, AdvancedChatMessageEntity, FileUploadEntity
from core.app.app_config.entities import ModelConfigEntity, FileUploadEntity
from core.file.file_obj import FileObj, FileType, FileTransferMethod
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_runtime.entities.message_entities import UserPromptMessage, AssistantPromptMessage, PromptMessageRole
from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig, ChatModelMessage
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from models.model import Conversation
......@@ -18,16 +18,20 @@ def test__get_completion_model_prompt_messages():
model_config_mock.model = 'gpt-3.5-turbo-instruct'
prompt_template = "Context:\n{{#context#}}\n\nHistories:\n{{#histories#}}\n\nyou are {{name}}."
prompt_template_entity = PromptTemplateEntity(
prompt_type=PromptTemplateEntity.PromptType.ADVANCED,
advanced_completion_prompt_template=AdvancedCompletionPromptTemplateEntity(
prompt=prompt_template,
role_prefix=AdvancedCompletionPromptTemplateEntity.RolePrefixEntity(
user="Human",
assistant="Assistant"
)
prompt_template_config = CompletionModelPromptTemplate(
text=prompt_template
)
memory_config = MemoryConfig(
role_prefix=MemoryConfig.RolePrefix(
user="Human",
assistant="Assistant"
),
window=MemoryConfig.WindowConfig(
enabled=False
)
)
inputs = {
"name": "John"
}
......@@ -48,11 +52,12 @@ def test__get_completion_model_prompt_messages():
prompt_transform = AdvancedPromptTransform()
prompt_transform._calculate_rest_token = MagicMock(return_value=2000)
prompt_messages = prompt_transform._get_completion_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=prompt_template_config,
inputs=inputs,
query=None,
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config_mock
)
......@@ -67,7 +72,7 @@ def test__get_completion_model_prompt_messages():
def test__get_chat_model_prompt_messages(get_chat_model_args):
model_config_mock, prompt_template_entity, inputs, context = get_chat_model_args
model_config_mock, memory_config, messages, inputs, context = get_chat_model_args
files = []
query = "Hi2."
......@@ -86,11 +91,12 @@ def test__get_chat_model_prompt_messages(get_chat_model_args):
prompt_transform = AdvancedPromptTransform()
prompt_transform._calculate_rest_token = MagicMock(return_value=2000)
prompt_messages = prompt_transform._get_chat_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=messages,
inputs=inputs,
query=query,
files=files,
context=context,
memory_config=memory_config,
memory=memory,
model_config=model_config_mock
)
......@@ -98,24 +104,25 @@ def test__get_chat_model_prompt_messages(get_chat_model_args):
assert len(prompt_messages) == 6
assert prompt_messages[0].role == PromptMessageRole.SYSTEM
assert prompt_messages[0].content == PromptTemplateParser(
template=prompt_template_entity.advanced_chat_prompt_template.messages[0].text
template=messages[0].text
).format({**inputs, "#context#": context})
assert prompt_messages[5].content == query
def test__get_chat_model_prompt_messages_no_memory(get_chat_model_args):
model_config_mock, prompt_template_entity, inputs, context = get_chat_model_args
model_config_mock, _, messages, inputs, context = get_chat_model_args
files = []
prompt_transform = AdvancedPromptTransform()
prompt_transform._calculate_rest_token = MagicMock(return_value=2000)
prompt_messages = prompt_transform._get_chat_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=messages,
inputs=inputs,
query=None,
files=files,
context=context,
memory_config=None,
memory=None,
model_config=model_config_mock
)
......@@ -123,12 +130,12 @@ def test__get_chat_model_prompt_messages_no_memory(get_chat_model_args):
assert len(prompt_messages) == 3
assert prompt_messages[0].role == PromptMessageRole.SYSTEM
assert prompt_messages[0].content == PromptTemplateParser(
template=prompt_template_entity.advanced_chat_prompt_template.messages[0].text
template=messages[0].text
).format({**inputs, "#context#": context})
def test__get_chat_model_prompt_messages_with_files_no_memory(get_chat_model_args):
model_config_mock, prompt_template_entity, inputs, context = get_chat_model_args
model_config_mock, _, messages, inputs, context = get_chat_model_args
files = [
FileObj(
......@@ -148,11 +155,12 @@ def test__get_chat_model_prompt_messages_with_files_no_memory(get_chat_model_arg
prompt_transform = AdvancedPromptTransform()
prompt_transform._calculate_rest_token = MagicMock(return_value=2000)
prompt_messages = prompt_transform._get_chat_model_prompt_messages(
prompt_template_entity=prompt_template_entity,
prompt_template=messages,
inputs=inputs,
query=None,
files=files,
context=context,
memory_config=None,
memory=None,
model_config=model_config_mock
)
......@@ -160,7 +168,7 @@ def test__get_chat_model_prompt_messages_with_files_no_memory(get_chat_model_arg
assert len(prompt_messages) == 4
assert prompt_messages[0].role == PromptMessageRole.SYSTEM
assert prompt_messages[0].content == PromptTemplateParser(
template=prompt_template_entity.advanced_chat_prompt_template.messages[0].text
template=messages[0].text
).format({**inputs, "#context#": context})
assert isinstance(prompt_messages[3].content, list)
assert len(prompt_messages[3].content) == 2
......@@ -173,22 +181,31 @@ def get_chat_model_args():
model_config_mock.provider = 'openai'
model_config_mock.model = 'gpt-4'
prompt_template_entity = PromptTemplateEntity(
prompt_type=PromptTemplateEntity.PromptType.ADVANCED,
advanced_chat_prompt_template=AdvancedChatPromptTemplateEntity(
messages=[
AdvancedChatMessageEntity(text="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}",
role=PromptMessageRole.SYSTEM),
AdvancedChatMessageEntity(text="Hi.", role=PromptMessageRole.USER),
AdvancedChatMessageEntity(text="Hello!", role=PromptMessageRole.ASSISTANT),
]
memory_config = MemoryConfig(
window=MemoryConfig.WindowConfig(
enabled=False
)
)
prompt_messages = [
ChatModelMessage(
text="You are a helpful assistant named {{name}}.\n\nContext:\n{{#context#}}",
role=PromptMessageRole.SYSTEM
),
ChatModelMessage(
text="Hi.",
role=PromptMessageRole.USER
),
ChatModelMessage(
text="Hello!",
role=PromptMessageRole.ASSISTANT
)
]
inputs = {
"name": "John"
}
context = "I am superman."
return model_config_mock, prompt_template_entity, inputs, context
return model_config_mock, memory_config, prompt_messages, inputs, context
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment