Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
dify
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ai-tech
dify
Commits
ee9c7e20
Unverified
Commit
ee9c7e20
authored
Jan 19, 2024
by
Jyong
Committed by
GitHub
Jan 19, 2024
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
delete document cache embedding (#2101)
Co-authored-by:
jyong
<
jyong@dify.ai
>
parent
483dcb63
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
49 deletions
+28
-49
cached_embedding.py
api/core/embedding/cached_embedding.py
+28
-49
No files found.
api/core/embedding/cached_embedding.py
View file @
ee9c7e20
import
base64
import
base64
import
json
import
json
import
logging
import
logging
from
typing
import
List
,
Optional
from
typing
import
List
,
Optional
,
cast
import
numpy
as
np
import
numpy
as
np
from
core.model_manager
import
ModelInstance
from
core.model_manager
import
ModelInstance
from
core.model_runtime.entities.model_entities
import
ModelPropertyKey
from
core.model_runtime.model_providers.__base.text_embedding_model
import
TextEmbeddingModel
from
extensions.ext_database
import
db
from
extensions.ext_database
import
db
from
langchain.embeddings.base
import
Embeddings
from
langchain.embeddings.base
import
Embeddings
...
@@ -22,56 +24,33 @@ class CacheEmbedding(Embeddings):
...
@@ -22,56 +24,33 @@ class CacheEmbedding(Embeddings):
self
.
_user
=
user
self
.
_user
=
user
def
embed_documents
(
self
,
texts
:
List
[
str
])
->
List
[
List
[
float
]]:
def
embed_documents
(
self
,
texts
:
List
[
str
])
->
List
[
List
[
float
]]:
"""Embed search docs."""
"""Embed search docs in batches of 10."""
# use doc embedding cache or store if not exists
text_embeddings
=
[]
text_embeddings
=
[
None
for
_
in
range
(
len
(
texts
))]
embedding_queue_indices
=
[]
for
i
,
text
in
enumerate
(
texts
):
hash
=
helper
.
generate_text_hash
(
text
)
embedding_cache_key
=
f
'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding
=
redis_client
.
get
(
embedding_cache_key
)
if
embedding
:
redis_client
.
expire
(
embedding_cache_key
,
3600
)
text_embeddings
[
i
]
=
list
(
np
.
frombuffer
(
base64
.
b64decode
(
embedding
),
dtype
=
"float"
))
else
:
embedding_queue_indices
.
append
(
i
)
if
embedding_queue_indices
:
try
:
try
:
model_type_instance
=
cast
(
TextEmbeddingModel
,
self
.
_model_instance
.
model_type_instance
)
model_schema
=
model_type_instance
.
get_model_schema
(
self
.
_model_instance
.
model
,
self
.
_model_instance
.
credentials
)
max_chunks
=
model_schema
.
model_properties
[
ModelPropertyKey
.
MAX_CHUNKS
]
\
if
model_schema
and
ModelPropertyKey
.
MAX_CHUNKS
in
model_schema
.
model_properties
else
1
for
i
in
range
(
0
,
len
(
texts
),
max_chunks
):
batch_texts
=
texts
[
i
:
i
+
max_chunks
]
embedding_result
=
self
.
_model_instance
.
invoke_text_embedding
(
embedding_result
=
self
.
_model_instance
.
invoke_text_embedding
(
texts
=
[
texts
[
i
]
for
i
in
embedding_queue_indices
]
,
texts
=
batch_texts
,
user
=
self
.
_user
user
=
self
.
_user
)
)
embedding_results
=
embedding_result
.
embeddings
for
vector
in
embedding_result
.
embeddings
:
except
Exception
as
ex
:
logger
.
error
(
'Failed to embed documents: '
,
ex
)
raise
ex
for
i
,
indice
in
enumerate
(
embedding_queue_indices
):
hash
=
helper
.
generate_text_hash
(
texts
[
indice
])
try
:
try
:
embedding_cache_key
=
f
'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
vector
=
embedding_results
[
i
]
normalized_embedding
=
(
vector
/
np
.
linalg
.
norm
(
vector
))
.
tolist
()
normalized_embedding
=
(
vector
/
np
.
linalg
.
norm
(
vector
))
.
tolist
()
text_embeddings
[
indice
]
=
normalized_embedding
text_embeddings
.
append
(
normalized_embedding
)
# encode embedding to base64
embedding_vector
=
np
.
array
(
normalized_embedding
)
vector_bytes
=
embedding_vector
.
tobytes
()
# Transform to Base64
encoded_vector
=
base64
.
b64encode
(
vector_bytes
)
# Transform to string
encoded_str
=
encoded_vector
.
decode
(
"utf-8"
)
redis_client
.
setex
(
embedding_cache_key
,
3600
,
encoded_str
)
except
IntegrityError
:
except
IntegrityError
:
db
.
session
.
rollback
()
db
.
session
.
rollback
()
continue
except
Exception
as
e
:
except
:
logging
.
exception
(
'Failed to add embedding to redis'
)
logging
.
exception
(
'Failed to add embedding to redis'
)
continue
except
Exception
as
ex
:
logger
.
error
(
'Failed to embed documents: '
,
ex
)
raise
ex
return
text_embeddings
return
text_embeddings
...
@@ -82,7 +61,7 @@ class CacheEmbedding(Embeddings):
...
@@ -82,7 +61,7 @@ class CacheEmbedding(Embeddings):
embedding_cache_key
=
f
'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding_cache_key
=
f
'{self._model_instance.provider}_{self._model_instance.model}_{hash}'
embedding
=
redis_client
.
get
(
embedding_cache_key
)
embedding
=
redis_client
.
get
(
embedding_cache_key
)
if
embedding
:
if
embedding
:
redis_client
.
expire
(
embedding_cache_key
,
3
600
)
redis_client
.
expire
(
embedding_cache_key
,
600
)
return
list
(
np
.
frombuffer
(
base64
.
b64decode
(
embedding
),
dtype
=
"float"
))
return
list
(
np
.
frombuffer
(
base64
.
b64decode
(
embedding
),
dtype
=
"float"
))
...
@@ -105,7 +84,7 @@ class CacheEmbedding(Embeddings):
...
@@ -105,7 +84,7 @@ class CacheEmbedding(Embeddings):
encoded_vector
=
base64
.
b64encode
(
vector_bytes
)
encoded_vector
=
base64
.
b64encode
(
vector_bytes
)
# Transform to string
# Transform to string
encoded_str
=
encoded_vector
.
decode
(
"utf-8"
)
encoded_str
=
encoded_vector
.
decode
(
"utf-8"
)
redis_client
.
setex
(
embedding_cache_key
,
3
600
,
encoded_str
)
redis_client
.
setex
(
embedding_cache_key
,
600
,
encoded_str
)
except
IntegrityError
:
except
IntegrityError
:
db
.
session
.
rollback
()
db
.
session
.
rollback
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment