Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
dify
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ai-tech
dify
Commits
409e0c8e
Unverified
Commit
409e0c8e
authored
Jan 28, 2024
by
Jyong
Committed by
GitHub
Jan 28, 2024
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update qdrant migrate command (#2260)
Co-authored-by:
jyong
<
jyong@dify.ai
>
parent
7076d41b
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
16 additions
and
49 deletions
+16
-49
commands.py
api/commands.py
+16
-49
No files found.
api/commands.py
View file @
409e0c8e
...
@@ -339,26 +339,7 @@ def create_qdrant_indexes():
...
@@ -339,26 +339,7 @@ def create_qdrant_indexes():
)
)
except
Exception
:
except
Exception
:
try
:
continue
embedding_model
=
model_manager
.
get_default_model_instance
(
tenant_id
=
dataset
.
tenant_id
,
model_type
=
ModelType
.
TEXT_EMBEDDING
,
)
dataset
.
embedding_model
=
embedding_model
.
model
dataset
.
embedding_model_provider
=
embedding_model
.
provider
except
Exception
:
provider
=
Provider
(
id
=
'provider_id'
,
tenant_id
=
dataset
.
tenant_id
,
provider_name
=
'openai'
,
provider_type
=
ProviderType
.
SYSTEM
.
value
,
encrypted_config
=
json
.
dumps
({
'openai_api_key'
:
'TEST'
}),
is_valid
=
True
,
)
model_provider
=
OpenAIProvider
(
provider
=
provider
)
embedding_model
=
OpenAIEmbedding
(
name
=
"text-embedding-ada-002"
,
model_provider
=
model_provider
)
embeddings
=
CacheEmbedding
(
embedding_model
)
embeddings
=
CacheEmbedding
(
embedding_model
)
from
core.index.vector_index.qdrant_vector_index
import
QdrantConfig
,
QdrantVectorIndex
from
core.index.vector_index.qdrant_vector_index
import
QdrantConfig
,
QdrantVectorIndex
...
@@ -405,7 +386,7 @@ def update_qdrant_indexes():
...
@@ -405,7 +386,7 @@ def update_qdrant_indexes():
.
order_by
(
Dataset
.
created_at
.
desc
())
.
paginate
(
page
=
page
,
per_page
=
50
)
.
order_by
(
Dataset
.
created_at
.
desc
())
.
paginate
(
page
=
page
,
per_page
=
50
)
except
NotFound
:
except
NotFound
:
break
break
model_manager
=
ModelManager
()
page
+=
1
page
+=
1
for
dataset
in
datasets
:
for
dataset
in
datasets
:
if
dataset
.
index_struct_dict
:
if
dataset
.
index_struct_dict
:
...
@@ -413,23 +394,15 @@ def update_qdrant_indexes():
...
@@ -413,23 +394,15 @@ def update_qdrant_indexes():
try
:
try
:
click
.
echo
(
'Update dataset qdrant index: {}'
.
format
(
dataset
.
id
))
click
.
echo
(
'Update dataset qdrant index: {}'
.
format
(
dataset
.
id
))
try
:
try
:
embedding_model
=
ModelFactory
.
get_embedding_model
(
embedding_model
=
model_manager
.
get_model_instance
(
tenant_id
=
dataset
.
tenant_id
,
tenant_id
=
dataset
.
tenant_id
,
model_provider_name
=
dataset
.
embedding_model_provider
,
provider
=
dataset
.
embedding_model_provider
,
model_name
=
dataset
.
embedding_model
model_type
=
ModelType
.
TEXT_EMBEDDING
,
model
=
dataset
.
embedding_model
)
)
except
Exception
:
except
Exception
:
provider
=
Provider
(
continue
id
=
'provider_id'
,
tenant_id
=
dataset
.
tenant_id
,
provider_name
=
'openai'
,
provider_type
=
ProviderType
.
CUSTOM
.
value
,
encrypted_config
=
json
.
dumps
({
'openai_api_key'
:
'TEST'
}),
is_valid
=
True
,
)
model_provider
=
OpenAIProvider
(
provider
=
provider
)
embedding_model
=
OpenAIEmbedding
(
name
=
"text-embedding-ada-002"
,
model_provider
=
model_provider
)
embeddings
=
CacheEmbedding
(
embedding_model
)
embeddings
=
CacheEmbedding
(
embedding_model
)
from
core.index.vector_index.qdrant_vector_index
import
QdrantConfig
,
QdrantVectorIndex
from
core.index.vector_index.qdrant_vector_index
import
QdrantConfig
,
QdrantVectorIndex
...
@@ -524,23 +497,17 @@ def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count:
...
@@ -524,23 +497,17 @@ def deal_dataset_vector(flask_app: Flask, dataset: Dataset, normalization_count:
try
:
try
:
click
.
echo
(
'restore dataset index: {}'
.
format
(
dataset
.
id
))
click
.
echo
(
'restore dataset index: {}'
.
format
(
dataset
.
id
))
try
:
try
:
embedding_model
=
ModelFactory
.
get_embedding_model
(
model_manager
=
ModelManager
()
embedding_model
=
model_manager
.
get_model_instance
(
tenant_id
=
dataset
.
tenant_id
,
tenant_id
=
dataset
.
tenant_id
,
model_provider_name
=
dataset
.
embedding_model_provider
,
provider
=
dataset
.
embedding_model_provider
,
model_name
=
dataset
.
embedding_model
model_type
=
ModelType
.
TEXT_EMBEDDING
,
model
=
dataset
.
embedding_model
)
)
except
Exception
:
except
Exception
:
provider
=
Provider
(
pass
id
=
'provider_id'
,
tenant_id
=
dataset
.
tenant_id
,
provider_name
=
'openai'
,
provider_type
=
ProviderType
.
CUSTOM
.
value
,
encrypted_config
=
json
.
dumps
({
'openai_api_key'
:
'TEST'
}),
is_valid
=
True
,
)
model_provider
=
OpenAIProvider
(
provider
=
provider
)
embedding_model
=
OpenAIEmbedding
(
name
=
"text-embedding-ada-002"
,
model_provider
=
model_provider
)
embeddings
=
CacheEmbedding
(
embedding_model
)
embeddings
=
CacheEmbedding
(
embedding_model
)
dataset_collection_binding
=
db
.
session
.
query
(
DatasetCollectionBinding
)
.
\
dataset_collection_binding
=
db
.
session
.
query
(
DatasetCollectionBinding
)
.
\
filter
(
DatasetCollectionBinding
.
provider_name
==
embedding_model
.
model_provider
.
provider_name
,
filter
(
DatasetCollectionBinding
.
provider_name
==
embedding_model
.
model_provider
.
provider_name
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment