Commit 703aefbd authored by jyong's avatar jyong

add rag test

parent cc84d077
from ctypes import Union
from typing import List, Optional, Tuple
from qdrant_client.conversions import common_types as types
from typing import List
class MockMilvusClass(object):
@staticmethod
def get_collections() -> types.CollectionsResponse:
collections_response = types.CollectionsResponse(
collections=["test"]
)
return collections_response
@staticmethod
def recreate_collection() -> bool:
return True
@staticmethod
def create_payload_index() -> types.UpdateResult:
update_result = types.UpdateResult(
updated=1
)
return update_result
def insert() -> List[Union[str, int]]:
result = [447829498067199697]
return result
@staticmethod
def upsert() -> types.UpdateResult:
update_result = types.UpdateResult(
updated=1
)
return update_result
def delete() -> List[Union[str, int]]:
result = [447829498067199697]
return result
@staticmethod
def insert() -> List[Union[str, int]]:
result = ['d48632d7-c972-484a-8ed9-262490919c79']
def search() -> List[dict]:
result = [
{
'id': 447829498067199697,
'distance': 0.8776655793190002,
'entity': {
'page_content': 'Dify is a company that provides a platform for the development of AI models.',
'metadata':
{
'doc_id': '327d1cb8-15ce-4934-bede-936a13c19ace',
'doc_hash': '7ee3cf010e606bb768c3bca7b1397ff651fd008ef10e56a646c537d2c8afb319',
'document_id': '6c4619dd-2169-4879-b05a-b8937c98c80c',
'dataset_id': 'a2f4f4eb-75eb-4432-8c5f-788100533454'
}
}
}
]
return result
@staticmethod
def delete() -> List[Union[str, int]]:
result = ['d48632d7-c972-484a-8ed9-262490919c79']
def query() -> List[dict]:
result = [
{
'id': 447829498067199697,
'distance': 0.8776655793190002,
'entity': {
'page_content': 'Dify is a company that provides a platform for the development of AI models.',
'metadata':
{
'doc_id': '327d1cb8-15ce-4934-bede-936a13c19ace',
'doc_hash': '7ee3cf010e606bb768c3bca7b1397ff651fd008ef10e56a646c537d2c8afb319',
'document_id': '6c4619dd-2169-4879-b05a-b8937c98c80c',
'dataset_id': 'a2f4f4eb-75eb-4432-8c5f-788100533454'
}
}
}
]
return result
@staticmethod
def scroll() -> Tuple[List[types.Record], Optional[types.PointId]]:
record = types.Record(
id='d48632d7-c972-484a-8ed9-262490919c79',
payload={'group_id': '06798db6-1f99-489a-b599-dd386a043f2d',
'metadata': {'dataset_id': '06798db6-1f99-489a-b599-dd386a043f2d',
'doc_hash': '85197672a2c2b05d2c8690cb7f1eedc78fe5f0ca7b8ae8a301f64eb8d959b436',
'doc_id': 'd48632d7-c972-484a-8ed9-262490919c79',
'document_id': '1518a57d-9049-426e-99ae-5a6d479175c0'},
'page_content': 'Dify is a company that provides a platform for the development of AI models.'},
vector=[0.23333 for _ in range(233)]
)
return [record], 'd48632d7-c972-484a-8ed9-262490919c79'
def create_collection_with_schema():
pass
@staticmethod
def search() -> List[types.ScoredPoint]:
result = types.ScoredPoint(
id='d48632d7-c972-484a-8ed9-262490919c79',
payload={'group_id': '06798db6-1f99-489a-b599-dd386a043f2d',
'metadata': {'dataset_id': '06798db6-1f99-489a-b599-dd386a043f2d',
'doc_hash': '85197672a2c2b05d2c8690cb7f1eedc78fe5f0ca7b8ae8a301f64eb8d959b436',
'doc_id': 'd48632d7-c972-484a-8ed9-262490919c79',
'document_id': '1518a57d-9049-426e-99ae-5a6d479175c0'},
'page_content': 'Dify is a company that provides a platform for the development of AI models.'},
vision=999,
vector=[0.23333 for _ in range(233)],
score=0.99
)
return [result]
def has_collection() -> bool:
return True
......@@ -27,18 +27,18 @@ def mock_milvus(monkeypatch: MonkeyPatch, methods: List[Literal["get_collections
if "connect" in methods:
monkeypatch.setattr(Connections, "connect", MockMilvusClass.delete())
if "get_collections" in methods:
monkeypatch.setattr(utility, "has_collection", MockMilvusClass.get_collections())
if "has_collection" in methods:
monkeypatch.setattr(utility, "has_collection", MockMilvusClass.has_collection())
if "insert" in methods:
monkeypatch.setattr(MilvusClient, "insert", MockMilvusClass.insert())
if "create_payload_index" in methods:
monkeypatch.setattr(QdrantClient, "create_payload_index", MockMilvusClass.create_payload_index())
if "upsert" in methods:
monkeypatch.setattr(QdrantClient, "upsert", MockMilvusClass.upsert())
if "scroll" in methods:
monkeypatch.setattr(QdrantClient, "scroll", MockMilvusClass.scroll())
if "query" in methods:
monkeypatch.setattr(MilvusClient, "query", MockMilvusClass.query())
if "delete" in methods:
monkeypatch.setattr(MilvusClient, "delete", MockMilvusClass.delete())
if "search" in methods:
monkeypatch.setattr(QdrantClient, "search", MockMilvusClass.search())
monkeypatch.setattr(MilvusClient, "search", MockMilvusClass.search())
if "create_collection_with_schema" in methods:
monkeypatch.setattr(MilvusClient, "create_collection_with_schema", MockMilvusClass.create_collection_with_schema())
return unpatch
......
"""test paragraph index processor."""
import datetime
import uuid
from typing import Optional
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.retrieval_service import RetrievalService
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.extractor.extract_processor import ExtractProcessor
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.models.document import Document
from libs import helper
from models.dataset import Dataset
from models.model import UploadFile
class ParagraphIndexProcessor(BaseIndexProcessor):
def extract(self) -> list[Document]:
file_detail = UploadFile(
tenant_id='test',
storage_type='local',
key='test.txt',
name='test.txt',
size=1024,
extension='txt',
mime_type='text/plain',
created_by='test',
created_at=datetime.datetime.utcnow(),
used=True,
used_by='d48632d7-c972-484a-8ed9-262490919c79',
used_at=datetime.datetime.utcnow()
)
extract_setting = ExtractSetting(
datasource_type="upload_file",
upload_file=file_detail,
document_model='text_model'
)
text_docs = ExtractProcessor.extract(extract_setting=extract_setting,
is_automatic=False)
return text_docs
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
# Split the text documents into nodes.
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
embedding_model_instance=kwargs.get('embedding_model_instance'))
all_documents = []
for document in documents:
# document clean
document_text = CleanProcessor.clean(document.page_content, kwargs.get('process_rule'))
document.page_content = document_text
# parse document to nodes
document_nodes = splitter.split_documents([document])
split_documents = []
for document_node in document_nodes:
if document_node.page_content.strip():
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document_node.page_content)
document_node.metadata['doc_id'] = doc_id
document_node.metadata['doc_hash'] = hash
# delete Spliter character
page_content = document_node.page_content
if page_content.startswith(".") or page_content.startswith("。"):
page_content = page_content[1:]
else:
page_content = page_content
document_node.page_content = page_content
split_documents.append(document_node)
all_documents.extend(split_documents)
return all_documents
def load(self, dataset: Dataset, documents: list[Document], with_keywords: bool = True):
if dataset.indexing_technique == 'high_quality':
vector = Vector(dataset)
vector.create(documents)
if with_keywords:
keyword = Keyword(dataset)
keyword.create(documents)
def clean(self, dataset: Dataset, node_ids: Optional[list[str]], with_keywords: bool = True):
if dataset.indexing_technique == 'high_quality':
vector = Vector(dataset)
if node_ids:
vector.delete_by_ids(node_ids)
else:
vector.delete()
if with_keywords:
keyword = Keyword(dataset)
if node_ids:
keyword.delete_by_ids(node_ids)
else:
keyword.delete()
def retrieve(self, retrival_method: str, query: str, dataset: Dataset, top_k: int,
score_threshold: float, reranking_model: dict) -> list[Document]:
# Set search parameters.
results = RetrievalService.retrieve(retrival_method=retrival_method, dataset_id=dataset.id, query=query,
top_k=top_k, score_threshold=score_threshold,
reranking_model=reranking_model)
# Organize results.
docs = []
for result in results:
metadata = result.metadata
metadata['score'] = result.score
if result.score > score_threshold:
doc = Document(page_content=result.page_content, metadata=metadata)
docs.append(doc)
return docs
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment