Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
D
dify
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ai-tech
dify
Commits
a1cd043f
Unverified
Commit
a1cd043f
authored
Dec 03, 2023
by
Wen O.Y
Committed by
GitHub
Dec 03, 2023
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix: Incorrect order of embedded documents in CacheEmbedding (#1671)
parent
671a8e79
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
15 deletions
+11
-15
cached_embedding.py
api/core/embedding/cached_embedding.py
+11
-15
No files found.
api/core/embedding/cached_embedding.py
View file @
a1cd043f
...
...
@@ -18,31 +18,30 @@ class CacheEmbedding(Embeddings):
def
embed_documents
(
self
,
texts
:
List
[
str
])
->
List
[
List
[
float
]]:
"""Embed search docs."""
# use doc embedding cache or store if not exists
text_embeddings
=
[]
embedding_queue_
text
s
=
[]
for
text
in
texts
:
text_embeddings
=
[
None
for
_
in
range
(
len
(
texts
))
]
embedding_queue_
indice
s
=
[]
for
i
,
text
in
enumerate
(
texts
)
:
hash
=
helper
.
generate_text_hash
(
text
)
embedding
=
db
.
session
.
query
(
Embedding
)
.
filter_by
(
model_name
=
self
.
_embeddings
.
name
,
hash
=
hash
)
.
first
()
if
embedding
:
text_embeddings
.
append
(
embedding
.
get_embedding
()
)
text_embeddings
[
i
]
=
embedding
.
get_embedding
(
)
else
:
embedding_queue_
texts
.
append
(
text
)
embedding_queue_
indices
.
append
(
i
)
if
embedding_queue_
text
s
:
if
embedding_queue_
indice
s
:
try
:
embedding_results
=
self
.
_embeddings
.
client
.
embed_documents
(
embedding_queue_texts
)
embedding_results
=
self
.
_embeddings
.
client
.
embed_documents
(
[
texts
[
i
]
for
i
in
embedding_queue_indices
]
)
except
Exception
as
ex
:
raise
self
.
_embeddings
.
handle_exceptions
(
ex
)
i
=
0
normalized_embedding_results
=
[]
for
text
in
embedding_queue_texts
:
hash
=
helper
.
generate_text_hash
(
text
)
for
i
,
indice
in
enumerate
(
embedding_queue_indices
):
hash
=
helper
.
generate_text_hash
(
texts
[
indice
])
try
:
embedding
=
Embedding
(
model_name
=
self
.
_embeddings
.
name
,
hash
=
hash
)
vector
=
embedding_results
[
i
]
normalized_embedding
=
(
vector
/
np
.
linalg
.
norm
(
vector
))
.
tolist
()
normalized_embedding_results
.
append
(
normalized_embedding
)
text_embeddings
[
indice
]
=
normalized_embedding
embedding
.
set_embedding
(
normalized_embedding
)
db
.
session
.
add
(
embedding
)
db
.
session
.
commit
()
...
...
@@ -52,10 +51,7 @@ class CacheEmbedding(Embeddings):
except
:
logging
.
exception
(
'Failed to add embedding to db'
)
continue
finally
:
i
+=
1
text_embeddings
.
extend
(
normalized_embedding_results
)
return
text_embeddings
def
embed_query
(
self
,
text
:
str
)
->
List
[
float
]:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment