Commit ec710d7f authored by StyleZhang's avatar StyleZhang

Merge branch 'main' into feat/workflow

parents 36718c39 31070ffb
......@@ -145,6 +145,9 @@ docker/volumes/db/data/*
docker/volumes/redis/data/*
docker/volumes/weaviate/*
docker/volumes/qdrant/*
docker/volumes/etcd/*
docker/volumes/minio/*
docker/volumes/milvus/*
sdks/python-client/build
sdks/python-client/dist
......
......@@ -26,6 +26,7 @@ from config import CloudEditionConfig, Config
from extensions import (
ext_celery,
ext_code_based_extension,
ext_compress,
ext_database,
ext_hosting_provider,
ext_login,
......@@ -96,6 +97,7 @@ def create_app(test_config=None) -> Flask:
def initialize_extensions(app):
# Since the application instance is now created, pass it to each Flask
# extension instance to bind it to the Flask application instance (app)
ext_compress.init_app(app)
ext_code_based_extension.init()
ext_database.init_app(app)
ext_migrate.init(app, db)
......
......@@ -90,7 +90,7 @@ class Config:
# ------------------------
# General Configurations.
# ------------------------
self.CURRENT_VERSION = "0.5.7"
self.CURRENT_VERSION = "0.5.8"
self.COMMIT_SHA = get_env('COMMIT_SHA')
self.EDITION = "SELF_HOSTED"
self.DEPLOY_ENV = get_env('DEPLOY_ENV')
......@@ -293,6 +293,8 @@ class Config:
self.BATCH_UPLOAD_LIMIT = get_env('BATCH_UPLOAD_LIMIT')
self.API_COMPRESSION_ENABLED = get_bool_env('API_COMPRESSION_ENABLED')
class CloudEditionConfig(Config):
......
......@@ -88,7 +88,7 @@ class ChatMessageTextApi(Resource):
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=request.form['text'],
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)
......
......@@ -85,7 +85,7 @@ class ChatTextApi(InstalledAppResource):
response = AudioService.transcript_tts(
tenant_id=app_model.tenant_id,
text=request.form['text'],
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)
return {'data': response.data.decode('latin1')}
......
......@@ -87,7 +87,7 @@ class TextApi(Resource):
tenant_id=app_model.tenant_id,
text=args['text'],
end_user=end_user,
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=args['voice'] if args['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=args['streaming']
)
......
......@@ -84,7 +84,7 @@ class TextApi(WebApiResource):
tenant_id=app_model.tenant_id,
text=request.form['text'],
end_user=end_user.external_user_id,
voice=app_model.app_model_config.text_to_speech_dict.get('voice'),
voice=request.form['voice'] if request.form['voice'] else app_model.app_model_config.text_to_speech_dict.get('voice'),
streaming=False
)
......
......@@ -28,6 +28,9 @@ from models.model import Conversation, Message
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
_is_first_iteration = True
_ignore_observation_providers = ['wenxin']
def run(self, conversation: Conversation,
message: Message,
query: str,
......@@ -42,10 +45,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
agent_scratchpad: list[AgentScratchpadUnit] = []
self._init_agent_scratchpad(agent_scratchpad, self.history_prompt_messages)
# check model mode
if self.app_orchestration_config.model_config.mode == "completion":
# TODO: stop words
if 'Observation' not in app_orchestration_config.model_config.stop:
if 'Observation' not in app_orchestration_config.model_config.stop:
if app_orchestration_config.model_config.provider not in self._ignore_observation_providers:
app_orchestration_config.model_config.stop.append('Observation')
# override inputs
......@@ -202,6 +203,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
)
)
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you'
agent_scratchpad.append(scratchpad)
# get llm usage
......@@ -255,9 +257,15 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
# invoke tool
error_response = None
try:
if isinstance(tool_call_args, str):
try:
tool_call_args = json.loads(tool_call_args)
except json.JSONDecodeError:
pass
tool_response = tool_instance.invoke(
user_id=self.user_id,
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
tool_parameters=tool_call_args
)
# transform tool response to llm friendly response
tool_response = self.transform_tool_invoke_messages(tool_response)
......@@ -466,7 +474,7 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
if isinstance(message, AssistantPromptMessage):
current_scratchpad = AgentScratchpadUnit(
agent_response=message.content,
thought=message.content,
thought=message.content or 'I am thinking about how to help you',
action_str='',
action=None,
observation=None,
......@@ -546,7 +554,8 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
result = ''
for scratchpad in agent_scratchpad:
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
result += (scratchpad.thought or '') + (scratchpad.action_str or '') + \
next_iteration.replace("{{observation}}", scratchpad.observation or 'It seems that no response is available')
return result
......@@ -621,21 +630,24 @@ class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
))
# add assistant message
if len(agent_scratchpad) > 0:
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(AssistantPromptMessage(
content=(agent_scratchpad[-1].thought or '')
content=(agent_scratchpad[-1].thought or '') + (agent_scratchpad[-1].action_str or ''),
))
# add user message
if len(agent_scratchpad) > 0:
if len(agent_scratchpad) > 0 and not self._is_first_iteration:
prompt_messages.append(UserPromptMessage(
content=(agent_scratchpad[-1].observation or ''),
content=(agent_scratchpad[-1].observation or 'It seems that no response is available'),
))
self._is_first_iteration = False
return prompt_messages
elif mode == "completion":
# parse agent scratchpad
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
self._is_first_iteration = False
# parse prompt messages
return [UserPromptMessage(
content=first_prompt.replace("{{instruction}}", instruction)
......
......@@ -62,7 +62,8 @@ class IndexingRunner:
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
......@@ -120,7 +121,8 @@ class IndexingRunner:
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(index_processor, dataset, text_docs, processing_rule.to_dict())
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
processing_rule.to_dict())
# save segment
self._load_segments(dataset, dataset_document, documents)
......@@ -186,7 +188,7 @@ class IndexingRunner:
first()
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type, processing_rule.to_dict()).init_index_processor()
index_processor = IndexProcessorFactory(index_type).init_index_processor()
self._load(
index_processor=index_processor,
dataset=dataset,
......@@ -750,7 +752,7 @@ class IndexingRunner:
index_processor.load(dataset, documents)
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
text_docs: list[Document], process_rule: dict) -> list[Document]:
text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
# get embedding model instance
embedding_model_instance = None
if dataset.indexing_technique == 'high_quality':
......@@ -768,7 +770,8 @@ class IndexingRunner:
)
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
process_rule=process_rule)
process_rule=process_rule, tenant_id=dataset.tenant_id,
doc_language=doc_language)
return documents
......
......@@ -21,7 +21,7 @@ class AnthropicProvider(ModelProvider):
# Use `claude-instant-1` model for validate,
model_instance.validate_credentials(
model='claude-instant-1',
model='claude-instant-1.2',
credentials=credentials
)
except CredentialsValidateFailedError as ex:
......
......@@ -2,8 +2,8 @@ provider: anthropic
label:
en_US: Anthropic
description:
en_US: Anthropic’s powerful models, such as Claude 2 and Claude Instant.
zh_Hans: Anthropic 的强大模型,例如 Claude 2 和 Claude Instant
en_US: Anthropic’s powerful models, such as Claude 3.
zh_Hans: Anthropic 的强大模型,例如 Claude 3
icon_small:
en_US: icon_s_en.svg
icon_large:
......
- claude-3-opus-20240229
- claude-3-sonnet-20240229
- claude-2.1
- claude-instant-1.2
- claude-2
- claude-instant-1
......@@ -34,3 +34,4 @@ pricing:
output: '24.00'
unit: '0.000001'
currency: USD
deprecated: true
model: claude-3-opus-20240229
label:
en_US: claude-3-opus-20240229
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
- name: response_format
use_template: response_format
pricing:
input: '15.00'
output: '75.00'
unit: '0.000001'
currency: USD
model: claude-3-sonnet-20240229
label:
en_US: claude-3-sonnet-20240229
model_type: llm
features:
- agent-thought
- vision
model_properties:
mode: chat
context_size: 200000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
- name: response_format
use_template: response_format
pricing:
input: '3.00'
output: '15.00'
unit: '0.000001'
currency: USD
model: claude-instant-1.2
label:
en_US: claude-instant-1.2
model_type: llm
features: [ ]
model_properties:
mode: chat
context_size: 100000
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label:
zh_Hans: 取样数量
en_US: Top k
type: int
help:
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false
- name: max_tokens
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
- name: response_format
use_template: response_format
pricing:
input: '1.63'
output: '5.51'
unit: '0.000001'
currency: USD
......@@ -33,3 +33,4 @@ pricing:
output: '5.51'
unit: '0.000001'
currency: USD
deprecated: true
......@@ -108,7 +108,7 @@ class BaichuanTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(e)
raise InvokeConnectionError(str(e))
if response.status_code != 200:
try:
......
......@@ -57,7 +57,7 @@ class JinaTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(e)
raise InvokeConnectionError(str(e))
if response.status_code != 200:
try:
......
......@@ -59,7 +59,7 @@ class LocalAITextEmbeddingModel(TextEmbeddingModel):
try:
response = post(join(url, 'embeddings'), headers=headers, data=dumps(data), timeout=10)
except Exception as e:
raise InvokeConnectionError(e)
raise InvokeConnectionError(str(e))
if response.status_code != 200:
try:
......
......@@ -65,7 +65,7 @@ class MinimaxTextEmbeddingModel(TextEmbeddingModel):
try:
response = post(url, headers=headers, data=dumps(data))
except Exception as e:
raise InvokeConnectionError(e)
raise InvokeConnectionError(str(e))
if response.status_code != 200:
raise InvokeServerUnavailableError(response.text)
......
......@@ -34,7 +34,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice:
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
......
......@@ -53,7 +53,7 @@ class OpenLLMTextEmbeddingModel(TextEmbeddingModel):
# cloud not connect to the server
raise InvokeAuthorizationError(f"Invalid server URL: {e}")
except Exception as e:
raise InvokeConnectionError(e)
raise InvokeConnectionError(str(e))
if response.status_code != 200:
if response.status_code == 400:
......
......@@ -34,7 +34,7 @@ class TongyiText2SpeechModel(_CommonTongyi, TTSModel):
:return: text translated to audio file
"""
audio_type = self._get_model_audio_type(model, credentials)
if not voice or voice not in self.get_tts_model_voices(model=model, credentials=credentials):
if not voice or voice not in [d['value'] for d in self.get_tts_model_voices(model=model, credentials=credentials)]:
voice = self._get_model_default_voice(model, credentials)
if streaming:
return Response(stream_with_context(self._tts_invoke_streaming(model=model,
......
from os import path
from threading import Lock
from time import time
from requests.adapters import HTTPAdapter
from requests.exceptions import ConnectionError, MissingSchema, Timeout
from requests.sessions import Session
from yarl import URL
class XinferenceModelExtraParameter:
......@@ -55,7 +55,10 @@ class XinferenceHelper:
get xinference model extra parameter like model_format and model_handle_type
"""
url = path.join(server_url, 'v1/models', model_uid)
if not model_uid or not model_uid.strip() or not server_url or not server_url.strip():
raise RuntimeError('model_uid is empty')
url = str(URL(server_url) / 'v1' / 'models' / model_uid)
# this method is surrounded by a lock, and default requests may hang forever, so we just set a Adapter with max_retries=3
session = Session()
......@@ -66,7 +69,6 @@ class XinferenceHelper:
response = session.get(url, timeout=10)
except (MissingSchema, ConnectionError, Timeout) as e:
raise RuntimeError(f'get xinference model extra parameter failed, url: {url}, error: {e}')
if response.status_code != 200:
raise RuntimeError(f'get xinference model extra parameter failed, status code: {response.status_code}, response: {response.text}')
......
......@@ -3,6 +3,7 @@ import csv
from typing import Optional
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.extractor.helpers import detect_file_encodings
from core.rag.models.document import Document
......@@ -36,7 +37,7 @@ class CSVExtractor(BaseExtractor):
docs = self._read_from_file(csvfile)
except UnicodeDecodeError as e:
if self._autodetect_encoding:
detected_encodings = detect_filze_encodings(self._file_path)
detected_encodings = detect_file_encodings(self._file_path)
for encoding in detected_encodings:
try:
with open(self._file_path, newline="", encoding=encoding.encoding) as csvfile:
......
......@@ -7,7 +7,6 @@ from typing import Optional
import pandas as pd
from flask import Flask, current_app
from flask_login import current_user
from werkzeug.datastructures import FileStorage
from core.generator.llm_generator import LLMGenerator
......@@ -31,7 +30,7 @@ class QAIndexProcessor(BaseIndexProcessor):
def transform(self, documents: list[Document], **kwargs) -> list[Document]:
splitter = self._get_splitter(processing_rule=kwargs.get('process_rule'),
embedding_model_instance=None)
embedding_model_instance=kwargs.get('embedding_model_instance'))
# Split the text documents into nodes.
all_documents = []
......@@ -66,10 +65,10 @@ class QAIndexProcessor(BaseIndexProcessor):
for doc in sub_documents:
document_format_thread = threading.Thread(target=self._format_qa_document, kwargs={
'flask_app': current_app._get_current_object(),
'tenant_id': current_user.current_tenant.id,
'tenant_id': kwargs.get('tenant_id'),
'document_node': doc,
'all_qa_documents': all_qa_documents,
'document_language': kwargs.get('document_language', 'English')})
'document_language': kwargs.get('doc_language', 'English')})
threads.append(document_format_thread)
document_format_thread.start()
for thread in threads:
......
......@@ -18,3 +18,4 @@
- vectorizer
- gaode
- wecom
- qrcode
<?xml version="1.0" encoding="utf-8"?>
<!-- Uploaded to: SVG Repo, www.svgrepo.com, Generator: SVG Repo Mixer Tools -->
<svg width="800px" height="800px" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<g>
<path fill="none" d="M0 0h24v24H0z"/>
<path d="M16 17v-1h-3v-3h3v2h2v2h-1v2h-2v2h-2v-3h2v-1h1zm5 4h-4v-2h2v-2h2v4zM3 3h8v8H3V3zm2 2v4h4V5H5zm8-2h8v8h-8V3zm2 2v4h4V5h-4zM3 13h8v8H3v-8zm2 2v4h4v-4H5zm13-2h3v2h-3v-2zM6 6h2v2H6V6zm0 10h2v2H6v-2zM16 6h2v2h-2V6z"/>
</g>
</svg>
\ No newline at end of file
from typing import Any
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin.qrcode.tools.qrcode_generator import QRCodeGeneratorTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class QRCodeProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
try:
QRCodeGeneratorTool().invoke(user_id='',
tool_parameters={
'content': 'Dify 123 😊'
})
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))
identity:
author: Bowen Liang
name: qrcode
label:
en_US: QRCode
zh_Hans: 二维码工具
pt_BR: QRCode
description:
en_US: A tool for generating QR code (quick-response code) image.
zh_Hans: 一个二维码工具
pt_BR: A tool for generating QR code (quick-response code) image.
icon: icon.svg
import io
import logging
from typing import Any, Union
import qrcode
from qrcode.image.pure import PyPNGImage
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class QRCodeGeneratorTool(BuiltinTool):
def _invoke(self,
user_id: str,
tool_parameters: dict[str, Any],
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
"""
invoke tools
"""
# get expression
content = tool_parameters.get('content', '')
if not content:
return self.create_text_message('Invalid parameter content')
try:
img = qrcode.make(data=content, image_factory=PyPNGImage)
byte_stream = io.BytesIO()
img.save(byte_stream)
byte_array = byte_stream.getvalue()
return self.create_blob_message(blob=byte_array,
meta={'mime_type': 'image/png'},
save_as=self.VARIABLE_KEY.IMAGE.value)
except Exception:
logging.exception(f'Failed to generate QR code for content: {content}')
return self.create_text_message('Failed to generate QR code')
identity:
name: qrcode_generator
author: Bowen Liang
label:
en_US: QR Code Generator
zh_Hans: 二维码生成器
pt_BR: QR Code Generator
description:
human:
en_US: A tool for generating QR code image
zh_Hans: 一个用于生成二维码的工具
pt_BR: A tool for generating QR code image
llm: A tool for generating QR code image
parameters:
- name: content
type: string
required: true
label:
en_US: content text for QR code
zh_Hans: 二维码文本内容
pt_BR: content text for QR code
human_description:
en_US: content text for QR code
zh_Hans: 二维码文本内容
pt_BR: 二维码文本内容
form: llm
from typing import Any
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin.tavily.tools.tavily_search import TavilySearchTool
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class TavilyProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
try:
TavilySearchTool().fork_tool_runtime(
meta={
"credentials": credentials,
}
).invoke(
user_id='',
tool_parameters={
"query": "Sachin Tendulkar",
},
)
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))
\ No newline at end of file
identity:
author: Yash Parmar
name: tavily
label:
en_US: Tavily
zh_Hans: Tavily
pt_BR: Tavily
description:
en_US: Tavily
zh_Hans: Tavily
pt_BR: Tavily
icon: icon.png
credentials_for_provider:
tavily_api_key:
type: secret-input
required: true
label:
en_US: Tavily API key
zh_Hans: Tavily API key
pt_BR: Tavily API key
placeholder:
en_US: Please input your Tavily API key
zh_Hans: 请输入你的 Tavily API key
pt_BR: Please input your Tavily API key
help:
en_US: Get your Tavily API key from Tavily
zh_Hans: 从 TavilyApi 获取您的 Tavily API key
pt_BR: Get your Tavily API key from Tavily
url: https://docs.tavily.com/docs/tavily-api/introduction
from typing import Any, Optional
import requests
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
TAVILY_API_URL = "https://api.tavily.com"
class TavilySearch:
"""
A class for performing search operations using the Tavily Search API.
Args:
api_key (str): The API key for accessing the Tavily Search API.
Methods:
raw_results: Retrieves raw search results from the Tavily Search API.
results: Retrieves cleaned search results from the Tavily Search API.
clean_results: Cleans the raw search results.
"""
def __init__(self, api_key: str) -> None:
self.api_key = api_key
def raw_results(
self,
query: str,
max_results: Optional[int] = 3,
search_depth: Optional[str] = "advanced",
include_domains: Optional[list[str]] = [],
exclude_domains: Optional[list[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> dict:
"""
Retrieves raw search results from the Tavily Search API.
Args:
query (str): The search query.
max_results (int, optional): The maximum number of results to retrieve. Defaults to 3.
search_depth (str, optional): The search depth. Defaults to "advanced".
include_domains (List[str], optional): The domains to include in the search. Defaults to [].
exclude_domains (List[str], optional): The domains to exclude from the search. Defaults to [].
include_answer (bool, optional): Whether to include answer in the search results. Defaults to False.
include_raw_content (bool, optional): Whether to include raw content in the search results. Defaults to False.
include_images (bool, optional): Whether to include images in the search results. Defaults to False.
Returns:
dict: The raw search results.
"""
params = {
"api_key": self.api_key,
"query": query,
"max_results": max_results,
"search_depth": search_depth,
"include_domains": include_domains,
"exclude_domains": exclude_domains,
"include_answer": include_answer,
"include_raw_content": include_raw_content,
"include_images": include_images,
}
response = requests.post(f"{TAVILY_API_URL}/search", json=params)
response.raise_for_status()
return response.json()
def results(
self,
query: str,
max_results: Optional[int] = 3,
search_depth: Optional[str] = "advanced",
include_domains: Optional[list[str]] = [],
exclude_domains: Optional[list[str]] = [],
include_answer: Optional[bool] = False,
include_raw_content: Optional[bool] = False,
include_images: Optional[bool] = False,
) -> list[dict]:
"""
Retrieves cleaned search results from the Tavily Search API.
Args:
query (str): The search query.
max_results (int, optional): The maximum number of results to retrieve. Defaults to 3.
search_depth (str, optional): The search depth. Defaults to "advanced".
include_domains (List[str], optional): The domains to include in the search. Defaults to [].
exclude_domains (List[str], optional): The domains to exclude from the search. Defaults to [].
include_answer (bool, optional): Whether to include answer in the search results. Defaults to False.
include_raw_content (bool, optional): Whether to include raw content in the search results. Defaults to False.
include_images (bool, optional): Whether to include images in the search results. Defaults to False.
Returns:
list: The cleaned search results.
"""
raw_search_results = self.raw_results(
query,
max_results=max_results,
search_depth=search_depth,
include_domains=include_domains,
exclude_domains=exclude_domains,
include_answer=include_answer,
include_raw_content=include_raw_content,
include_images=include_images,
)
return self.clean_results(raw_search_results["results"])
def clean_results(self, results: list[dict]) -> list[dict]:
"""
Cleans the raw search results.
Args:
results (list): The raw search results.
Returns:
list: The cleaned search results.
"""
clean_results = []
for result in results:
clean_results.append(
{
"url": result["url"],
"content": result["content"],
}
)
# return clean results as a string
return "\n".join([f"{res['url']}\n{res['content']}" for res in clean_results])
class TavilySearchTool(BuiltinTool):
"""
A tool for searching Tavily using a given query.
"""
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> ToolInvokeMessage | list[ToolInvokeMessage]:
"""
Invokes the Tavily search tool with the given user ID and tool parameters.
Args:
user_id (str): The ID of the user invoking the tool.
tool_parameters (Dict[str, Any]): The parameters for the Tavily search tool.
Returns:
ToolInvokeMessage | list[ToolInvokeMessage]: The result of the Tavily search tool invocation.
"""
query = tool_parameters.get("query", "")
api_key = self.runtime.credentials["tavily_api_key"]
if not query:
return self.create_text_message("Please input query")
tavily_search = TavilySearch(api_key)
results = tavily_search.results(query)
print(results)
if not results:
return self.create_text_message(f"No results found for '{query}' in Tavily")
else:
return self.create_text_message(text=results)
identity:
name: tavily_search
author: Yash Parmar
label:
en_US: TavilySearch
zh_Hans: TavilySearch
pt_BR: TavilySearch
description:
human:
en_US: A tool for search engine built specifically for AI agents (LLMs), delivering real-time, accurate, and factual results at speed.
zh_Hans: 专为人工智能代理 (LLM) 构建的搜索引擎工具,可快速提供实时、准确和真实的结果。
pt_BR: A tool for search engine built specifically for AI agents (LLMs), delivering real-time, accurate, and factual results at speed.
llm: A tool for search engine built specifically for AI agents (LLMs), delivering real-time, accurate, and factual results at speed.
parameters:
- name: query
type: string
required: true
label:
en_US: Query string
zh_Hans: 查询语句
pt_BR: Query string
human_description:
en_US: used for searching
zh_Hans: 用于搜索网页内容
pt_BR: used for searching
llm_description: key words for searching
form: llm
<svg width="2500" height="2500" viewBox="0 0 256 256" xmlns="http://www.w3.org/2000/svg" preserveAspectRatio="xMidYMid"><g fill="#CF272D"><path d="M127.86 222.304c-52.005 0-94.164-42.159-94.164-94.163 0-52.005 42.159-94.163 94.164-94.163 52.004 0 94.162 42.158 94.162 94.163 0 52.004-42.158 94.163-94.162 94.163zm0-222.023C57.245.281 0 57.527 0 128.141 0 198.756 57.245 256 127.86 256c70.614 0 127.859-57.244 127.859-127.859 0-70.614-57.245-127.86-127.86-127.86z"/><path d="M133.116 96.297c0-14.682 11.903-26.585 26.586-26.585 14.683 0 26.585 11.903 26.585 26.585 0 14.684-11.902 26.586-26.585 26.586-14.683 0-26.586-11.902-26.586-26.586M133.116 159.983c0-14.682 11.903-26.586 26.586-26.586 14.683 0 26.585 11.904 26.585 26.586 0 14.683-11.902 26.586-26.585 26.586-14.683 0-26.586-11.903-26.586-26.586M69.431 159.983c0-14.682 11.904-26.586 26.586-26.586 14.683 0 26.586 11.904 26.586 26.586 0 14.683-11.903 26.586-26.586 26.586-14.682 0-26.586-11.903-26.586-26.586M69.431 96.298c0-14.683 11.904-26.585 26.586-26.585 14.683 0 26.586 11.902 26.586 26.585 0 14.684-11.903 26.586-26.586 26.586-14.682 0-26.586-11.902-26.586-26.586"/></g></svg>
\ No newline at end of file
from typing import Any, Union
from langchain.utilities import TwilioAPIWrapper
from core.tools.entities.tool_entities import ToolInvokeMessage
from core.tools.tool.builtin_tool import BuiltinTool
class SendMessageTool(BuiltinTool):
"""
A tool for sending messages using Twilio API.
Args:
user_id (str): The ID of the user invoking the tool.
tool_parameters (Dict[str, Any]): The parameters required for sending the message.
Returns:
Union[ToolInvokeMessage, List[ToolInvokeMessage]]: The result of invoking the tool, which includes the status of the message sending operation.
"""
def _invoke(
self, user_id: str, tool_parameters: dict[str, Any]
) -> Union[ToolInvokeMessage, list[ToolInvokeMessage]]:
account_sid = self.runtime.credentials["account_sid"]
auth_token = self.runtime.credentials["auth_token"]
from_number = self.runtime.credentials["from_number"]
message = tool_parameters["message"]
to_number = tool_parameters["to_number"]
if to_number.startswith("whatsapp:"):
from_number = f"whatsapp: {from_number}"
twilio = TwilioAPIWrapper(
account_sid=account_sid, auth_token=auth_token, from_number=from_number
)
# Sending the message through Twilio
result = twilio.run(message, to_number)
return self.create_text_message(text="Message sent successfully.")
identity:
name: send_message
author: Yash Parmar
label:
en_US: SendMessage
zh_Hans: 发送消息
pt_BR: SendMessage
description:
human:
en_US: Send SMS or Twilio Messaging Channels messages.
zh_Hans: 发送SMS或Twilio消息通道消息。
pt_BR: Send SMS or Twilio Messaging Channels messages.
llm: Send SMS or Twilio Messaging Channels messages. Supports different channels including WhatsApp.
parameters:
- name: message
type: string
required: true
label:
en_US: Message
zh_Hans: 消息内容
pt_BR: Message
human_description:
en_US: The content of the message to be sent.
zh_Hans: 要发送的消息内容。
pt_BR: The content of the message to be sent.
llm_description: The content of the message to be sent.
form: llm
- name: to_number
type: string
required: true
label:
en_US: To Number
zh_Hans: 收信号码
pt_BR: Para Número
human_description:
en_US: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
zh_Hans: 收件人的电话号码。WhatsApp消息前缀为'whatsapp:',例如,"whatsapp:+1234567890"。
pt_BR: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
llm_description: The recipient's phone number. Prefix with 'whatsapp:' for WhatsApp messages, e.g., "whatsapp:+1234567890".
form: llm
from typing import Any
from core.tools.errors import ToolProviderCredentialValidationError
from core.tools.provider.builtin_tool_provider import BuiltinToolProviderController
class TwilioProvider(BuiltinToolProviderController):
def _validate_credentials(self, credentials: dict[str, Any]) -> None:
try:
"""
SendMessageTool().fork_tool_runtime(
meta={
"credentials": credentials,
}
).invoke(
user_id="",
tool_parameters={
"message": "Credential validation message",
"to_number": "+14846624384",
},
)
"""
pass
except Exception as e:
raise ToolProviderCredentialValidationError(str(e))
identity:
author: Yash Parmar
name: twilio
label:
en_US: Twilio
zh_Hans: Twilio
pt_BR: Twilio
description:
en_US: Send messages through SMS or Twilio Messaging Channels.
zh_Hans: 通过SMS或Twilio消息通道发送消息。
pt_BR: Send messages through SMS or Twilio Messaging Channels.
icon: icon.svg
credentials_for_provider:
account_sid:
type: secret-input
required: true
label:
en_US: Account SID
zh_Hans: 账户SID
pt_BR: Account SID
placeholder:
en_US: Please input your Twilio Account SID
zh_Hans: 请输入您的Twilio账户SID
pt_BR: Please input your Twilio Account SID
auth_token:
type: secret-input
required: true
label:
en_US: Auth Token
zh_Hans: 认证令牌
pt_BR: Auth Token
placeholder:
en_US: Please input your Twilio Auth Token
zh_Hans: 请输入您的Twilio认证令牌
pt_BR: Please input your Twilio Auth Token
from_number:
type: secret-input
required: true
label:
en_US: From Number
zh_Hans: 发信号码
pt_BR: De Número
placeholder:
en_US: Please input your Twilio phone number
zh_Hans: 请输入您的Twilio电话号码
pt_BR: Please input your Twilio phone number
......@@ -174,7 +174,18 @@ class Tool(BaseModel, ABC):
return result
def invoke(self, user_id: str, tool_parameters: dict[str, Any]) -> list[ToolInvokeMessage]:
def invoke(self, user_id: str, tool_parameters: Union[dict[str, Any], str]) -> list[ToolInvokeMessage]:
# check if tool_parameters is a string
if isinstance(tool_parameters, str):
# check if this tool has only one parameter
parameters = [parameter for parameter in self.parameters if parameter.form == ToolParameter.ToolParameterForm.LLM]
if parameters and len(parameters) == 1:
tool_parameters = {
parameters[0].name: tool_parameters
}
else:
raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")
# update tool_parameters
if self.runtime.runtime_parameters:
tool_parameters.update(self.runtime.runtime_parameters)
......
from flask import Flask
def init_app(app: Flask):
if app.config.get('API_COMPRESSION_ENABLED', False):
from flask_compress import Compress
compress = Compress()
compress.init_app(app)
......@@ -3,6 +3,7 @@ beautifulsoup4==4.12.2
flask~=3.0.1
Flask-SQLAlchemy~=3.0.5
SQLAlchemy~=1.4.28
Flask-Compress~=1.14
flask-login~=0.6.3
flask-migrate~=4.0.5
flask-restful~=0.3.10
......@@ -35,7 +36,7 @@ docx2txt==0.8
pypdfium2==4.16.0
resend~=0.7.0
pyjwt~=2.8.0
anthropic~=0.7.7
anthropic~=0.17.0
newspaper3k==0.2.8
google-api-python-client==2.90.0
wikipedia==1.4.0
......@@ -67,4 +68,7 @@ pydub~=0.25.1
gmpy2~=2.1.5
numexpr~=2.9.0
duckduckgo-search==4.4.3
arxiv==2.1.0
\ No newline at end of file
arxiv==2.1.0
yarl~=1.9.4
twilio==9.0.0
qrcode~=7.4.2
import os
from time import sleep
from typing import Any, Generator, List, Literal, Union
from typing import Any, Literal, Union, Iterable
from anthropic.resources import Messages
from anthropic.types.message_delta_event import Delta
import anthropic
import pytest
from _pytest.monkeypatch import MonkeyPatch
from anthropic import Anthropic
from anthropic._types import NOT_GIVEN, Body, Headers, NotGiven, Query
from anthropic.resources.completions import Completions
from anthropic.types import Completion, completion_create_params
from anthropic import Anthropic, Stream
from anthropic.types import MessageParam, Message, MessageStreamEvent, \
ContentBlock, MessageStartEvent, Usage, TextDelta, MessageDeltaEvent, MessageStopEvent, ContentBlockDeltaEvent, \
MessageDeltaUsage
MOCK = os.getenv('MOCK_SWITCH', 'false') == 'true'
class MockAnthropicClass(object):
@staticmethod
def mocked_anthropic_chat_create_sync(model: str) -> Completion:
return Completion(
completion='hello, I\'m a chatbot from anthropic',
def mocked_anthropic_chat_create_sync(model: str) -> Message:
return Message(
id='msg-123',
type='message',
role='assistant',
content=[ContentBlock(text='hello, I\'m a chatbot from anthropic', type='text')],
model=model,
stop_reason='stop_sequence'
stop_reason='stop_sequence',
usage=Usage(
input_tokens=1,
output_tokens=1
)
)
@staticmethod
def mocked_anthropic_chat_create_stream(model: str) -> Generator[Completion, None, None]:
def mocked_anthropic_chat_create_stream(model: str) -> Stream[MessageStreamEvent]:
full_response_text = "hello, I'm a chatbot from anthropic"
for i in range(0, len(full_response_text) + 1):
sleep(0.1)
if i == len(full_response_text):
yield Completion(
completion='',
model=model,
stop_reason='stop_sequence'
)
else:
yield Completion(
completion=full_response_text[i],
model=model,
stop_reason=''
yield MessageStartEvent(
type='message_start',
message=Message(
id='msg-123',
content=[],
role='assistant',
model=model,
stop_reason=None,
type='message',
usage=Usage(
input_tokens=1,
output_tokens=1
)
)
)
index = 0
for i in range(0, len(full_response_text)):
sleep(0.1)
yield ContentBlockDeltaEvent(
type='content_block_delta',
delta=TextDelta(text=full_response_text[i], type='text_delta'),
index=index
)
index += 1
yield MessageDeltaEvent(
type='message_delta',
delta=Delta(
stop_reason='stop_sequence'
),
usage=MessageDeltaUsage(
output_tokens=1
)
)
yield MessageStopEvent(type='message_stop')
def mocked_anthropic(self: Completions, *,
max_tokens_to_sample: int,
model: Union[str, Literal["claude-2.1", "claude-instant-1"]],
prompt: str,
stream: Literal[True],
**kwargs: Any
) -> Union[Completion, Generator[Completion, None, None]]:
def mocked_anthropic(self: Messages, *,
max_tokens: int,
messages: Iterable[MessageParam],
model: str,
stream: Literal[True],
**kwargs: Any
) -> Union[Message, Stream[MessageStreamEvent]]:
if len(self._client.api_key) < 18:
raise anthropic.AuthenticationError('Invalid API key')
......@@ -55,12 +90,13 @@ class MockAnthropicClass(object):
else:
return MockAnthropicClass.mocked_anthropic_chat_create_sync(model=model)
@pytest.fixture
def setup_anthropic_mock(request, monkeypatch: MonkeyPatch):
if MOCK:
monkeypatch.setattr(Completions, 'create', MockAnthropicClass.mocked_anthropic)
monkeypatch.setattr(Messages, 'create', MockAnthropicClass.mocked_anthropic)
yield
if MOCK:
monkeypatch.undo()
\ No newline at end of file
monkeypatch.undo()
......@@ -32,68 +32,70 @@ class MockXinferenceClass(object):
response = Response()
if 'v1/models/' in url:
# get model uid
model_uid = url.split('/')[-1]
model_uid = url.split('/')[-1] or ''
if not re.match(r'[a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}', model_uid) and \
model_uid not in ['generate', 'chat', 'embedding', 'rerank']:
response.status_code = 404
response._content = b'{}'
return response
# check if url is valid
if not re.match(r'^(https?):\/\/[^\s\/$.?#].[^\s]*$', url):
response.status_code = 404
response._content = b'{}'
return response
if model_uid in ['generate', 'chat']:
response.status_code = 200
response._content = b'''{
"model_type": "LLM",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "chatglm3-6b",
"model_lang": [
"en"
],
"model_ability": [
"generate",
"chat"
],
"model_description": "latest chatglm3",
"model_format": "pytorch",
"model_size_in_billions": 7,
"quantization": "none",
"model_hub": "huggingface",
"revision": null,
"context_length": 2048,
"replica": 1
}'''
"model_type": "LLM",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "chatglm3-6b",
"model_lang": [
"en"
],
"model_ability": [
"generate",
"chat"
],
"model_description": "latest chatglm3",
"model_format": "pytorch",
"model_size_in_billions": 7,
"quantization": "none",
"model_hub": "huggingface",
"revision": null,
"context_length": 2048,
"replica": 1
}'''
return response
elif model_uid == 'embedding':
response.status_code = 200
response._content = b'''{
"model_type": "embedding",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "bge",
"model_lang": [
"en"
],
"revision": null,
"max_tokens": 512
}'''
"model_type": "embedding",
"address": "127.0.0.1:43877",
"accelerators": [
"0",
"1"
],
"model_name": "bge",
"model_lang": [
"en"
],
"revision": null,
"max_tokens": 512
}'''
return response
elif 'v1/cluster/auth' in url:
response.status_code = 200
response._content = b'''{
"auth": true
}'''
"auth": true
}'''
return response
def _check_cluster_authenticated(self):
......
......@@ -15,14 +15,14 @@ def test_validate_credentials(setup_anthropic_mock):
with pytest.raises(CredentialsValidateFailedError):
model.validate_credentials(
model='claude-instant-1',
model='claude-instant-1.2',
credentials={
'anthropic_api_key': 'invalid_key'
}
)
model.validate_credentials(
model='claude-instant-1',
model='claude-instant-1.2',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
}
......@@ -33,7 +33,7 @@ def test_invoke_model(setup_anthropic_mock):
model = AnthropicLargeLanguageModel()
response = model.invoke(
model='claude-instant-1',
model='claude-instant-1.2',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY'),
'anthropic_api_url': os.environ.get('ANTHROPIC_API_URL')
......@@ -49,7 +49,7 @@ def test_invoke_model(setup_anthropic_mock):
model_parameters={
'temperature': 0.0,
'top_p': 1.0,
'max_tokens_to_sample': 10
'max_tokens': 10
},
stop=['How'],
stream=False,
......@@ -64,7 +64,7 @@ def test_invoke_stream_model(setup_anthropic_mock):
model = AnthropicLargeLanguageModel()
response = model.invoke(
model='claude-instant-1',
model='claude-instant-1.2',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
},
......@@ -78,7 +78,7 @@ def test_invoke_stream_model(setup_anthropic_mock):
],
model_parameters={
'temperature': 0.0,
'max_tokens_to_sample': 100
'max_tokens': 100
},
stream=True,
user="abc-123"
......@@ -97,7 +97,7 @@ def test_get_num_tokens():
model = AnthropicLargeLanguageModel()
num_tokens = model.get_num_tokens(
model='claude-instant-1',
model='claude-instant-1.2',
credentials={
'anthropic_api_key': os.environ.get('ANTHROPIC_API_KEY')
},
......
......@@ -2,7 +2,7 @@ version: '3.1'
services:
# API service
api:
image: langgenius/dify-api:0.5.7
image: langgenius/dify-api:0.5.8
restart: always
environment:
# Startup mode, 'api' starts the API server.
......@@ -135,7 +135,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.5.7
image: langgenius/dify-api:0.5.8
restart: always
environment:
# Startup mode, 'worker' starts the Celery worker for processing the queue.
......@@ -206,7 +206,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.5.7
image: langgenius/dify-web:0.5.8
restart: always
environment:
EDITION: SELF_HOSTED
......
......@@ -40,6 +40,7 @@ const TextToSpeech: FC = () => {
{ languageInfo?.example && (
<AudioBtn
value={languageInfo?.example}
voice={voiceItem?.value}
isAudition={true}
/>
)}
......
......@@ -9,12 +9,14 @@ import { textToAudio } from '@/service/share'
type AudioBtnProps = {
value: string
voice?: string
className?: string
isAudition?: boolean
}
const AudioBtn = ({
value,
voice,
className,
isAudition,
}: AudioBtnProps) => {
......@@ -27,13 +29,16 @@ const AudioBtn = ({
const pathname = usePathname()
const removeCodeBlocks = (inputText: any) => {
const codeBlockRegex = /```[\s\S]*?```/g
return inputText.replace(codeBlockRegex, '')
if (inputText)
return inputText.replace(codeBlockRegex, '')
return ''
}
const playAudio = async () => {
const formData = new FormData()
if (value !== '') {
formData.append('text', removeCodeBlocks(value))
formData.append('voice', removeCodeBlocks(voice))
let url = ''
let isPublic = false
......@@ -56,13 +61,14 @@ const AudioBtn = ({
const audioUrl = URL.createObjectURL(blob)
const audio = new Audio(audioUrl)
audioRef.current = audio
audio.play().then(() => {
setIsPlaying(true)
}).catch(() => {
audio.play().then(() => {}).catch(() => {
setIsPlaying(false)
URL.revokeObjectURL(audioUrl)
})
audio.onended = () => setHasEnded(true)
audio.onended = () => {
setHasEnded(true)
setIsPlaying(false)
}
}
catch (error) {
setIsPlaying(false)
......@@ -70,24 +76,34 @@ const AudioBtn = ({
}
}
}
const togglePlayPause = () => {
if (audioRef.current) {
if (isPlaying) {
setPause(true)
audioRef.current.pause()
}
else if (!hasEnded) {
setPause(false)
audioRef.current.play()
if (!hasEnded) {
setPause(false)
audioRef.current.play()
}
if (!isPause) {
setPause(true)
audioRef.current.pause()
}
}
else if (!isPlaying) {
playAudio().then()
if (isPause) {
setPause(false)
audioRef.current.play()
}
else {
setHasEnded(false)
playAudio().then()
}
}
setIsPlaying(prevIsPlaying => !prevIsPlaying)
}
else {
playAudio().then()
setIsPlaying(true)
if (!isPlaying)
playAudio().then()
}
}
......@@ -102,7 +118,7 @@ const AudioBtn = ({
className={`box-border p-0.5 flex items-center justify-center cursor-pointer ${isAudition || 'rounded-md bg-white'}`}
style={{ boxShadow: !isAudition ? '0px 4px 8px -2px rgba(16, 24, 40, 0.1), 0px 2px 4px -2px rgba(16, 24, 40, 0.06)' : '' }}
onClick={togglePlayPause}>
<div className={`w-6 h-6 rounded-md ${!isAudition ? 'hover:bg-gray-200' : 'hover:bg-gray-50'} ${!isPause ? ((isPlaying && !hasEnded) ? s.playIcon : s.stopIcon) : s.pauseIcon}`}></div>
<div className={`w-6 h-6 rounded-md ${!isAudition ? 'hover:bg-gray-200' : 'hover:bg-gray-50'} ${(isPlaying && !hasEnded) ? s.pauseIcon : s.playIcon}`}></div>
</div>
</Tooltip>
</div>
......
......@@ -8,9 +8,3 @@
background-position: center;
background-repeat: no-repeat;
}
.stopIcon {
background-position: center;
background-repeat: no-repeat;
background-image: url(~@/app/components/develop/secret-key/assets/stop.svg);
}
\ No newline at end of file
......@@ -77,6 +77,7 @@ const Operation: FC<OperationProps> = ({
{(!isOpeningStatement && config?.text_to_speech?.enabled) && (
<AudioBtn
value={content}
voice={config?.text_to_speech?.voice}
className='hidden group-hover:block'
/>
)}
......
......@@ -9,6 +9,7 @@ import {
} from 'react'
import { useTranslation } from 'react-i18next'
import { useThrottleEffect } from 'ahooks'
import { debounce } from 'lodash-es'
import type {
ChatConfig,
ChatItem,
......@@ -81,16 +82,24 @@ const Chat: FC<ChatProps> = ({
chatContainerRef.current.scrollTop = chatContainerRef.current.scrollHeight
}
useThrottleEffect(() => {
handleScrolltoBottom()
const handleWindowResize = () => {
if (chatContainerRef.current && chatFooterRef.current)
chatFooterRef.current.style.width = `${chatContainerRef.current.clientWidth}px`
if (chatContainerInnerRef.current && chatFooterInnerRef.current)
chatFooterInnerRef.current.style.width = `${chatContainerInnerRef.current.clientWidth}px`
}
useThrottleEffect(() => {
handleScrolltoBottom()
handleWindowResize()
}, [chatList], { wait: 500 })
useEffect(() => {
window.addEventListener('resize', debounce(handleWindowResize))
return () => window.removeEventListener('resize', handleWindowResize)
}, [])
useEffect(() => {
if (chatFooterRef.current && chatContainerRef.current) {
const resizeObserver = new ResizeObserver((entries) => {
......
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<g clip-path="url(#clip0_129_107)">
<path d="M7.99991 14.6666C11.6819 14.6666 14.6666 11.6819 14.6666 7.99998C14.6666 4.31808 11.6819 1.33331 7.99998 1.33331C4.31808 1.33331 1.33331 4.31808 1.33331 7.99998C1.33331 11.6819 4.31808 14.6666 7.99998 14.6666Z" stroke="#155EEF" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M6.66665 5.33331L10.6666 7.99998L6.66665 10.6666V5.33331Z" stroke="#155EEF" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M7.99998 14.6666C11.6819 14.6666 14.6666 11.6819 14.6666 7.99998C14.6666 4.31808 11.6819 1.33331 7.99998 1.33331C4.31808 1.33331 1.33331 4.31808 1.33331 7.99998C1.33331 11.6819 4.31808 14.6666 7.99998 14.6666Z" stroke="#667085" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M6.66665 5.33331L10.6666 7.99998L6.66665 10.6666V5.33331Z" stroke="#667085" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
</g>
<defs>
<clipPath id="clip0_129_107">
......
<svg width="16" height="16" viewBox="0 0 16 16" fill="none" xmlns="http://www.w3.org/2000/svg">
<g clip-path="url(#clip0_129_107)">
<path d="M7.99998 14.6666C11.6819 14.6666 14.6666 11.6819 14.6666 7.99998C14.6666 4.31808 11.6819 1.33331 7.99998 1.33331C4.31808 1.33331 1.33331 4.31808 1.33331 7.99998C1.33331 11.6819 4.31808 14.6666 7.99998 14.6666Z" stroke="#667085" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M6.66665 5.33331L10.6666 7.99998L6.66665 10.6666V5.33331Z" stroke="#667085" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round"/>
</g>
<defs>
<clipPath id="clip0_129_107">
<rect width="16" height="16" fill="white"/>
</clipPath>
</defs>
</svg>
......@@ -71,8 +71,8 @@ Chat applications support session persistence, allowing previous chat history to
- `upload_file_id` (string) Uploaded file ID, which must be obtained by uploading through the File Upload API in advance (when the transfer method is `local_file`)
</Property>
<Property name='auto_generate_name' type='bool' key='auto_generate_name'>
Auto-generate title, default is `false`.
Can achieve async title generation by calling the conversation rename API and setting `auto_generate` to true.
Auto-generate title, default is `true`.
If set to `false`, can achieve async title generation by calling the conversation rename API and setting `auto_generate` to `true`.
</Property>
</Properties>
......
......@@ -71,7 +71,7 @@ import { Row, Col, Properties, Property, Heading, SubProperty } from '../md.tsx'
- `upload_file_id` 上传文件 ID。(仅当传递方式为 `local_file `时)。
</Property>
<Property name='auto_generate_name' type='bool' key='auto_generate_name'>
(选填)自动生成标题,默认 `false`。 可通过调用会话重命名接口并设置 `auto_generate` 为 `true` 实现异步生成标题。
(选填)自动生成标题,默认 `true`。 若设置为 `false`,则可通过调用会话重命名接口并设置 `auto_generate` 为 `true` 实现异步生成标题。
</Property>
</Properties>
......
{
"name": "dify-web",
"version": "0.5.7",
"version": "0.5.8",
"private": true,
"scripts": {
"dev": "next dev",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment